Suppr超能文献

季节性流感和大流行性流感传播动力学的推断

Inference of seasonal and pandemic influenza transmission dynamics.

作者信息

Yang Wan, Lipsitch Marc, Shaman Jeffrey

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032; and

Center for Communicable Disease Dynamics, Harvard School of Public Health, Harvard University, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2723-8. doi: 10.1073/pnas.1415012112. Epub 2015 Feb 17.

Abstract

The inference of key infectious disease epidemiological parameters is critical for characterizing disease spread and devising prevention and containment measures. The recent emergence of surveillance records mined from big data such as health-related online queries and social media, as well as model inference methods, permits the development of new methodologies for more comprehensive estimation of these parameters. We use such data in conjunction with Bayesian inference methods to study the transmission dynamics of influenza. We simultaneously estimate key epidemiological parameters, including population susceptibility, the basic reproductive number, attack rate, and infectious period, for 115 cities during the 2003-2004 through 2012-2013 seasons, including the 2009 pandemic. These estimates discriminate key differences in the epidemiological characteristics of these outbreaks across 10 y, as well as spatial variations of influenza transmission dynamics among subpopulations in the United States. In addition, the inference methods appear to compensate for observational biases and underreporting inherent in the surveillance data.

摘要

关键传染病流行病学参数的推断对于描述疾病传播以及制定预防和控制措施至关重要。近期,从诸如健康相关在线查询和社交媒体等大数据中挖掘出的监测记录以及模型推断方法的出现,使得开发用于更全面估计这些参数的新方法成为可能。我们将此类数据与贝叶斯推断方法相结合,以研究流感的传播动态。我们同时估计了2003 - 2004年至2012 - 2013年季节(包括2009年大流行)期间115个城市的关键流行病学参数,包括人群易感性、基本再生数、发病率和传染期。这些估计区分了这10年间这些疫情在流行病学特征上的关键差异,以及美国亚人群中流感传播动态的空间变化。此外,推断方法似乎弥补了监测数据中固有的观察偏差和报告不足。

相似文献

1
Inference of seasonal and pandemic influenza transmission dynamics.季节性流感和大流行性流感传播动力学的推断
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2723-8. doi: 10.1073/pnas.1415012112. Epub 2015 Feb 17.
7
Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission.对比流感空间传播的流行病学和进化动态。
Philos Trans R Soc Lond B Biol Sci. 2013 Feb 4;368(1614):20120199. doi: 10.1098/rstb.2012.0199. Print 2013 Mar 19.

引用本文的文献

1
Waning immunity drives respiratory virus evolution and reinfection.免疫力下降推动呼吸道病毒进化和再次感染。
Evol Med Public Health. 2025 Jan 31;13(1):101-110. doi: 10.1093/emph/eoaf002. eCollection 2025.
3
How immunity shapes the long-term dynamics of influenza H3N2.免疫力如何塑造甲型H3N2流感病毒的长期动态变化。
PLoS Comput Biol. 2025 Mar 20;21(3):e1012893. doi: 10.1371/journal.pcbi.1012893. eCollection 2025 Mar.
8
Inference on spatiotemporal dynamics for coupled biological populations.对耦合生物群体时空动态的推断。
J R Soc Interface. 2024 Jul;21(216):20240217. doi: 10.1098/rsif.2024.0217. Epub 2024 Jul 10.

本文引用的文献

7
When Google got flu wrong.当谷歌在流感预测上出错时。
Nature. 2013 Feb 14;494(7436):155-6. doi: 10.1038/494155a.
8
Forecasting seasonal outbreaks of influenza.预测季节性流感爆发。
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30. doi: 10.1073/pnas.1208772109. Epub 2012 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验