Alexa Anita, Gógl Gergő, Glatz Gábor, Garai Ágnes, Zeke András, Varga János, Dudás Erika, Jeszenői Norbert, Bodor Andrea, Hetényi Csaba, Reményi Attila
Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and.
Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, and Departments of Biochemistry and.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2711-6. doi: 10.1073/pnas.1417571112. Epub 2015 Feb 17.
Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase-kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 "docking" groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they "readjust," whereas generic kinase domain surface contacts bring them into a catalytically competent state.
丝裂原活化蛋白激酶(MAPKs)结合并激活其下游激酶底物,即丝裂原活化蛋白激酶激活的蛋白激酶(MAPKAPKs)。值得注意的是,细胞外信号调节激酶2(ERK2)使核糖体S6激酶1(RSK1)磷酸化,从而促进细胞生长。在此,我们确定了与激活激酶形成复合物的RSK1构建体的晶体结构。该结构捕获了处于催化前状态的激酶-激酶复合物,其中下游激酶(RSK1)的激活环面向酶(ERK2)的催化位点。分子动力学模拟用于展示这种异二聚体如何转变为具有信号传导能力的状态。这种结构分析结合对MAPK→MAPKAPK信号传导的生化和细胞研究表明,MAPK结合线性基序(存在于无序的激酶结构域延伸中)与ERK2“对接”凹槽之间的相互作用在形成相遇复合物中起主要作用。这种相互作用在激酶结构域“重新调整”时使它们靠近,而一般的激酶结构域表面接触将它们带入催化活性状态。