Esrafili Mehdi D, Mohammadian-Sabet Fariba
Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran,
J Mol Model. 2015 Mar;21(3):65. doi: 10.1007/s00894-015-2613-5. Epub 2015 Mar 3.
Ab initio calculations have been carried out to investigate the σ-hole interaction in XHY···CH3 and XHY···CH2CH3 complexes, where X = F, Cl, Br and Y = S, Se. This interaction, termed "single-electron chalcogen bond interaction" was analyzed in terms of geometric, interaction energies and electronic features of the complexes. This interaction is a weak one, with an interaction energy that varies from a minimum of -1.7 kcal mol(-1) for BrHS···CH3 to -6.0 kcal mol(-1) for FHSe···CH2CH3 at the CCSD(T)/aug-cc-pVTZ level of theory. Energy decomposition analysis indicated that the dominant attraction energy originates in the electrostatic term which is larger for the Se complexes than for the S counterparts. However, the attractive polarization and dispersion components also make an important contribution to the interaction energy for the single-electron chalcogen bond interactions.
已进行从头算计算,以研究XHY···CH₃和XHY···CH₂CH₃配合物中的σ-空穴相互作用,其中X = F、Cl、Br,Y = S、Se。根据配合物的几何结构、相互作用能和电子特征,对这种被称为“单电子硫族元素键相互作用”的相互作用进行了分析。这种相互作用较弱,在CCSD(T)/aug-cc-pVTZ理论水平下,相互作用能从BrHS···CH₃的最低-1.7 kcal mol⁻¹到FHSe···CH₂CH₃的-6.0 kcal mol⁻¹不等。能量分解分析表明,主要的吸引能源于静电项,对于含Se的配合物,该项比含S的对应物更大。然而,吸引性的极化和色散分量对单电子硫族元素键相互作用的相互作用能也有重要贡献。