Suppr超能文献

具有任意组结构的多元多重线性回归的多元稀疏组套索法。

Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

作者信息

Li Yanming, Nan Bin, Zhu Ji

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, 48109, U.S.A.

Department of Statistics, University of Michigan, Ann Arbor, Michigan, 48109, U.S.A.

出版信息

Biometrics. 2015 Jun;71(2):354-63. doi: 10.1111/biom.12292. Epub 2015 Mar 2.

Abstract

We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study.

摘要

我们针对具有高维预测变量以及高维响应变量的数据,提出了一种多变量稀疏组套索变量选择与估计方法。该方法通过一个对回归系数矩阵具有任意组结构的惩罚多变量多元线性回归模型来实现。它非常适合许多生物学研究,用于检测多个性状与多个预测变量之间的关联,其中每个性状和每个预测变量都嵌入在一些生物学功能组中,如基因、通路或脑区。该方法能够有效去除不重要的组以及重要组内不重要的个体系数,尤其适用于大p小n问题,并且在处理各种复杂的组结构(如重叠、嵌套或多级层次结构)时具有灵活性。通过与传统套索和组套索方法进行比较的广泛模拟对该方法进行了评估,并将其应用于一项eQTL关联研究。

相似文献

1
Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.
Biometrics. 2015 Jun;71(2):354-63. doi: 10.1111/biom.12292. Epub 2015 Mar 2.
2
Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
Biometrics. 2013 Jun;69(2):447-57. doi: 10.1111/biom.12021. Epub 2013 Apr 22.
3
Sparse regression models for unraveling group and individual associations in eQTL mapping.
BMC Bioinformatics. 2016 Mar 22;17:136. doi: 10.1186/s12859-016-0986-9.
4
VARIABLE SELECTION FOR HIGH DIMENSIONAL MULTIVARIATE OUTCOMES.
Stat Sin. 2014 Oct;24(4):1633-1654. doi: 10.5705/ss.2013.019.
5
The LASSO and sparse least square regression methods for SNP selection in predicting quantitative traits.
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):629-36. doi: 10.1109/TCBB.2011.139. Epub 2011 Oct 17.
6
Fast and robust group-wise eQTL mapping using sparse graphical models.
BMC Bioinformatics. 2015 Jan 16;16:2. doi: 10.1186/s12859-014-0421-z.
7
Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.
Genet Epidemiol. 2017 Sep;41(6):567-573. doi: 10.1002/gepi.22053. Epub 2017 Jun 23.
8
The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
Genetics. 2017 Jan;205(1):77-88. doi: 10.1534/genetics.116.192195. Epub 2016 Oct 31.
9
Joint variable selection and network modeling for detecting eQTLs.
Stat Appl Genet Mol Biol. 2020 Feb 20;19(1):/j/sagmb.2020.19.issue-1/sagmb-2019-0032/sagmb-2019-0032.xml. doi: 10.1515/sagmb-2019-0032.
10
Flexible variable selection for recovering sparsity in nonadditive nonparametric models.
Biometrics. 2016 Dec;72(4):1155-1163. doi: 10.1111/biom.12518. Epub 2016 Apr 14.

引用本文的文献

1
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates.
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2421246.
2
Multivariate Bayesian variable selection for multi-trait genetic fine mapping.
J R Stat Soc Ser C Appl Stat. 2024 Oct 28;74(2):331-351. doi: 10.1093/jrsssc/qlae055. eCollection 2025 Mar.
3
Molecular group and correlation guided structural learning for multi-phenotype prediction.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae585.
4
Deep network embedding with dimension selection.
Neural Netw. 2024 Nov;179:106512. doi: 10.1016/j.neunet.2024.106512. Epub 2024 Jul 11.
5
On the Use of Minimum Penalties in Statistical Learning.
J Comput Graph Stat. 2024;33(1):138-151. doi: 10.1080/10618600.2023.2210174. Epub 2023 Jun 20.
6
8
Factors associated with healthy aging in Latin American populations.
Nat Med. 2023 Sep;29(9):2248-2258. doi: 10.1038/s41591-023-02495-1. Epub 2023 Aug 10.
9
Neuroimaging feature extraction using a neural network classifier for imaging genetics.
BMC Bioinformatics. 2023 Jun 30;24(1):271. doi: 10.1186/s12859-023-05394-x.
10
Doubly structured sparsity for grouped multivariate responses with application to functional outcome score modeling.
Stat Med. 2023 Jul 10;42(15):2619-2636. doi: 10.1002/sim.9740. Epub 2023 Apr 9.

本文引用的文献

2
A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA.
Ann Appl Stat. 2011 Dec;5(4):2630-2650. doi: 10.1214/11-AOAS494.
3
Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration.
Biometrics. 2012 Jun;68(2):587-97. doi: 10.1111/j.1541-0420.2011.01680.x. Epub 2011 Sep 28.
4
Association screening of common and rare genetic variants by penalized regression.
Bioinformatics. 2010 Oct 1;26(19):2375-82. doi: 10.1093/bioinformatics/btq448. Epub 2010 Aug 6.
5
Voxelwise genome-wide association study (vGWAS).
Neuroimage. 2010 Nov 15;53(3):1160-74. doi: 10.1016/j.neuroimage.2010.02.032. Epub 2010 Feb 17.
6
A group bridge approach for variable selection.
Biometrika. 2009 Jun;96(2):339-355. doi: 10.1093/biomet/asp020.
7
A new multiple regression approach for the construction of genetic regulatory networks.
Artif Intell Med. 2010 Feb-Mar;48(2-3):153-60. doi: 10.1016/j.artmed.2009.11.001. Epub 2009 Dec 5.
8
Discovery of protein-DNA interactions by penalized multivariate regression.
Nucleic Acids Res. 2009 Sep;37(16):5246-54. doi: 10.1093/nar/gkp554. Epub 2009 Jul 3.
9
Penalized logistic regression for detecting gene interactions.
Biostatistics. 2008 Jan;9(1):30-50. doi: 10.1093/biostatistics/kxm010. Epub 2007 Apr 11.
10
The landscape of genetic complexity across 5,700 gene expression traits in yeast.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7. doi: 10.1073/pnas.0408709102. Epub 2005 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验