Suppr超能文献

用于恢复非加性非参数模型稀疏性的灵活变量选择

Flexible variable selection for recovering sparsity in nonadditive nonparametric models.

作者信息

Fang Zaili, Kim Inyoung, Schaumont Patrick

机构信息

Department of Statistics, Virginia Tech., Blacksburg, Virginia, U.S.A.

Department of Electrical and Computer Engineering, Virginia Tech., Blacksburg, Virginia, U.S.A.

出版信息

Biometrics. 2016 Dec;72(4):1155-1163. doi: 10.1111/biom.12518. Epub 2016 Apr 14.

Abstract

Variable selection for recovering sparsity in nonadditive and nonparametric models with high-dimensional variables has been challenging. This problem becomes even more difficult due to complications in modeling unknown interaction terms among high-dimensional variables. There is currently no variable selection method to overcome these limitations. Hence, in this article we propose a variable selection approach that is developed by connecting a kernel machine with the nonparametric regression model. The advantages of our approach are that it can: (i) recover the sparsity; (ii) automatically model unknown and complicated interactions; (iii) connect with several existing approaches including linear nonnegative garrote and multiple kernel learning; and (iv) provide flexibility for both additive and nonadditive nonparametric models. Our approach can be viewed as a nonlinear version of a nonnegative garrote method. We model the smoothing function by a Least Squares Kernel Machine (LSKM) and construct the nonnegative garrote objective function as the function of the sparse scale parameters of kernel machine to recover sparsity of input variables whose relevances to the response are measured by the scale parameters. We also provide the asymptotic properties of our approach. We show that sparsistency is satisfied with consistent initial kernel function coefficients under certain conditions. An efficient coordinate descent/backfitting algorithm is developed. A resampling procedure for our variable selection methodology is also proposed to improve the power.

摘要

在具有高维变量的非加性和非参数模型中恢复稀疏性的变量选择一直具有挑战性。由于对高维变量之间未知交互项进行建模存在复杂性,这个问题变得更加困难。目前没有变量选择方法能够克服这些限制。因此,在本文中,我们提出了一种通过将核机器与非参数回归模型相连接而开发的变量选择方法。我们方法的优点在于它能够:(i)恢复稀疏性;(ii)自动对未知且复杂的交互进行建模;(iii)与包括线性非负绞杀法和多核学习在内的几种现有方法相联系;(iv)为加性和非加性非参数模型提供灵活性。我们的方法可以看作是非负绞杀法的非线性版本。我们用最小二乘核机器(LSKM)对平滑函数进行建模,并将非负绞杀目标函数构造为核机器稀疏尺度参数的函数,以恢复输入变量的稀疏性,这些变量与响应的相关性由尺度参数衡量。我们还给出了我们方法的渐近性质。我们表明在某些条件下,一致的初始核函数系数满足稀疏一致性。我们开发了一种有效的坐标下降/反向拟合算法。还提出了一种用于我们变量选择方法的重采样程序以提高功效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验