Suppr超能文献

临床蛋白质组学与乳腺癌

Clinical proteomics and breast cancer.

作者信息

Zeidan Bashar A, Townsend Paul A, Garbis Spiros D, Copson Ellen, Cutress Ramsey I

机构信息

Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton University Hospitals NHS Foundation Trust, Southampton, SO16 6YD, UK.

Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.

出版信息

Surgeon. 2015 Oct;13(5):271-8. doi: 10.1016/j.surge.2014.12.003. Epub 2015 Feb 24.

Abstract

BACKGROUND

Breast cancer is a heterogeneous disease. Yet, many molecular players and mechanisms behind the complexity of its clinical behaviour remain unknown, and advances in biomedical research are expected to unravel novel molecular discoveries in breast and other cancers. Clinical proteomics is currently experiencing rapid advances in technology that promise new means to improve breast cancer early diagnosis, stratification, and treatment response.

METHODS

We reviewed recent literature adopting clinical proteomics in breast cancer research.

FINDINGS

This review highlights the principles, advantages, limitations, discoveries and future prospects of recent clinical proteomics discovery efforts in breast cancer research.

CONCLUSION

Numerous proteomic studies of breast cancer have been accomplished aiming to aid the development of personalised therapies, increase understanding of post treatment relapse, and help improve prediction of patient prognosis. This has led to the possible identification of profiles refining breast cancer subtypes and the discovery of novel biomarkers pointing towards diagnostic and prognostic potential.

摘要

背景

乳腺癌是一种异质性疾病。然而,其临床行为复杂性背后的许多分子参与者和机制仍不为人知,生物医学研究的进展有望揭示乳腺癌及其他癌症中的新分子发现。临床蛋白质组学目前在技术上正在迅速发展,有望提供改善乳腺癌早期诊断、分层和治疗反应的新方法。

方法

我们回顾了近期在乳腺癌研究中采用临床蛋白质组学的文献。

研究结果

本综述强调了近期乳腺癌研究中临床蛋白质组学发现工作的原理、优势、局限性、发现和未来前景。

结论

已经完成了许多乳腺癌蛋白质组学研究,旨在帮助开发个性化疗法,增进对治疗后复发的理解,并有助于改善对患者预后的预测。这可能导致识别出细化乳腺癌亚型的特征,并发现具有诊断和预后潜力的新型生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验