Suppr超能文献

小分子类朊病毒纳米纤维(PriSM):超分子化学与细胞生物学交叉领域的新前沿。

Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

作者信息

Zhou Jie, Du Xuewen, Xu Bing

机构信息

a Department of Chemistry ; Brandeis University ; Waltham , MA USA.

出版信息

Prion. 2015;9(2):110-8. doi: 10.1080/19336896.2015.1022021.

Abstract

Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

摘要

由非共价相互作用形成且在基因层面未明确界定,生物学中小分子的组装体复杂且较少被探索。小分子超分子组装体的一种常见形态是纳米纤维,这恰好类似于由朊病毒等蛋白质形成的纳米纤维。因此,这些超分子组装体被称为小分子类朊病毒纳米纤维(PriSM)。过去十年来自几个不相关领域的新证据表明PriSM在生物学和医学中的重要性。这篇综述旨在突出PriSM研究的一些最新进展。本文首先描述了PriSM与朊病毒之间有趣的相似之处,讨论了PriSM的矛盾特征,介绍了阐明PriSM生物学功能的方法,举例说明了PriSM有益的几个方面,并以PriSM研究的前景和当前挑战作为结尾。我们预计,PriSM的研究将有助于在超分子化学与细胞生物学交叉领域的基础理解,并最终引领生物医学分子(或超分子)治疗的新范式。

相似文献

2
Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.
J Biol Chem. 2014 Oct 17;289(42):29208-18. doi: 10.1074/jbc.M114.600288. Epub 2014 Aug 25.
3
Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch.
Bioconjug Chem. 2015 Sep 16;26(9):1879-83. doi: 10.1021/acs.bioconjchem.5b00356. Epub 2015 Aug 12.
5
Prion encephalopathies of animals and humans.
Dev Biol Stand. 1993;80:31-44.
6
Biology and genetics of prion diseases.
Annu Rev Microbiol. 1994;48:655-86. doi: 10.1146/annurev.mi.48.100194.003255.
7
Prion peptide-mediated cellular prion protein overexpression and neuronal cell death can be blocked by aspirin treatment.
Int J Mol Med. 2011 May;27(5):689-93. doi: 10.3892/ijmm.2011.626. Epub 2011 Feb 23.
8
Prion diseases of the central nervous system.
Monogr Pathol. 1990(32):86-122.
9
Enzymatic hydrogelation of small molecules.
Acc Chem Res. 2008 Feb;41(2):315-26. doi: 10.1021/ar7001914. Epub 2008 Jan 19.
10
Nanoscale Assemblies of Small Molecules Control the Fate of Cells.
Nano Today. 2015 Oct;10(5):615-630. doi: 10.1016/j.nantod.2015.09.001. Epub 2015 Oct 20.

引用本文的文献

1
Engineering responsive supramolecular biomaterials: Toward smart therapeutics.
Bioeng Transl Med. 2016 Sep 19;1(3):252-266. doi: 10.1002/btm2.10031. eCollection 2016 Sep.
2
Supramolecular biofunctional materials.
Biomaterials. 2017 Jun;129:1-27. doi: 10.1016/j.biomaterials.2017.03.014. Epub 2017 Mar 12.
3
Supramolecular biomaterials.
Nat Mater. 2016 Jan;15(1):13-26. doi: 10.1038/nmat4474.
4
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
Chem Rev. 2015 Dec 23;115(24):13165-307. doi: 10.1021/acs.chemrev.5b00299. Epub 2015 Dec 8.

本文引用的文献

1
Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile.
J Am Chem Soc. 2015 Jan 21;137(2):576-9. doi: 10.1021/ja5111893. Epub 2015 Jan 8.
2
Ligand-receptor interaction catalyzes the aggregation of small molecules to induce cell necroptosis.
J Am Chem Soc. 2015 Jan 14;137(1):26-9. doi: 10.1021/ja5100417. Epub 2014 Dec 26.
3
Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator.
J Am Chem Soc. 2015 Jan 21;137(2):770-5. doi: 10.1021/ja510156v. Epub 2015 Jan 5.
4
Kinetic intermediates in amyloid assembly.
J Am Chem Soc. 2014 Oct 29;136(43):15146-9. doi: 10.1021/ja508621b. Epub 2014 Oct 21.
5
Unraveling the mechanism of cell death induced by chemical fibrils.
Nat Chem Biol. 2014 Nov;10(11):969-76. doi: 10.1038/nchembio.1639. Epub 2014 Sep 28.
6
D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides.
Biomacromolecules. 2014 Oct 13;15(10):3559-68. doi: 10.1021/bm5010355. Epub 2014 Sep 17.
7
Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.
J Biol Chem. 2014 Oct 17;289(42):29208-18. doi: 10.1074/jbc.M114.600288. Epub 2014 Aug 25.
8
L-Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials.
Org Biomol Chem. 2014 Sep 21;12(35):6816-9. doi: 10.1039/c4ob01362j.
10
Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo.
Adv Healthc Mater. 2014 Aug;3(8):1217-21. doi: 10.1002/adhm.201300645. Epub 2014 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验