Webber Matthew J
Dept. of Chemical & Biomolecular Engineering University of Notre Dame Notre Dame IN 46556.
Bioeng Transl Med. 2016 Sep 19;1(3):252-266. doi: 10.1002/btm2.10031. eCollection 2016 Sep.
Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.
利用超分子原理设计工程材料能够实现具有可调节化学、机械和生物学特性的通用且模块化的平台。将这种基于自下而上的分子工程方法应用于治疗设计,可对涌现的特性和功能进行无与伦比的控制。在制备用于生物医学应用的响应性材料时,与必须克服共价键的情况相比,典型超分子相互作用的动态特性有助于构建能够通过材料特性的根本变化更快速地感知和响应特定刺激的系统。已经对几种超分子基序进行了评估,以制备能够感知和响应刺激的“智能”材料。在设计用于治疗用途的材料时,感兴趣的触发因素包括施加的外部场、环境变化、生物致动器、施加的机械负荷以及相对结合亲和力的调节。此外,可以实现多刺激响应途径,以捕捉触发因素的组合以增加功能。总之,超分子工程为制备响应性材料提供了一种高度功能性的策略。这些方法的未来发展和完善将提高材料形成和响应性的精度,寻求与活生物系统相互作用中的动态互惠,并改善对疾病的时空感知,以实现更好的治疗部署。