Suppr超能文献

基于增量神经网络与偏最小二乘法的近红外光谱定量分析模型

[Near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares].

作者信息

Cao Hui, Li Da-Hang, Liu Ling, Zhou Yan

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Oct;34(10):2799-803.

Abstract

This paper proposes an near infrared spectroscopy quantitative analysis model based on incremental neural network with partial least squares. The proposed model adopts the typical three-layer back-propagation neural network (BPNN), and the absorbance of different wavelengths and the component concentration are the inputs and the outputs, respectively. Partial least square (PLS) regression is performed on the history training samples firstly, and the obtained history loading matrices of the in- dependent variables and the dependent variables are used for determining the initial weights of the input layer and the output lay- er, respectively. The number of the hidden layer nodes is set as the number of the principal components of the independent varia- bles. After a set of new training samples is collected, PLS regression is performed on the combination dataset consisting of the new samples and the history loading matrices to calculate the new loading matrices. The history loading matrices and the new loading matrices are fused to obtain the new initial weights of the input layer and the output layer of the proposed model. Then the new samples are used for training the proposed mode to realize the incremental update. The proposed model is compared with PLS, BPNN, the BPNN based on PLS (PLS-BPNN) and the recursive PLS (RPLS) by using the spectra data of flue gas of nat- ural gas combustion. For the concentration prediction of the carbon dioxide in the flue gas, the root mean square error of predic- tion (RMSEP) of the proposed model are reduced by 27.27%, 58.12%, 19.24% and 14.26% than those of PLS, BPNN, PLS- BPNN and RPLS, respectively. For the concentration prediction of the carbon monoxide in the flue gas, the RMSEP of the pro- posed model are reduced by 20.65%, 24.69%, 18.54% and 19.42% than those of PLS, BPNN, PLS-BPNN and RPLS, re- spectively. For the concentration prediction of the methane in the flue gas, the RMSEP of the proposed model are reduced by 27.56%, 37.76%, 8.63% and 3.20% than those of PLS, BPNN, PLS-BPNN and RPLS, respectively. Experiments results show that the proposed model could optimize the construction and the initial weights of BPNN by PLS and has higher prediction effectiveness. Moreover, based on the information of the built model, the proposed model uses the new samples for incremental update without accessing the history samples. Hence, the proposed model has better robustness and generalization.

摘要

本文提出了一种基于增量神经网络与偏最小二乘法的近红外光谱定量分析模型。所提出的模型采用典型的三层反向传播神经网络(BPNN),不同波长的吸光度和组分浓度分别作为输入和输出。首先对历史训练样本进行偏最小二乘(PLS)回归,并将得到的自变量和因变量的历史载荷矩阵分别用于确定输入层和输出层的初始权重。隐藏层节点数设置为自变量的主成分数。收集一组新的训练样本后,对由新样本和历史载荷矩阵组成的组合数据集进行PLS回归以计算新的载荷矩阵。将历史载荷矩阵和新的载荷矩阵融合,得到所提出模型输入层和输出层的新初始权重。然后使用新样本对所提出的模型进行训练以实现增量更新。通过使用天然气燃烧烟气的光谱数据,将所提出的模型与PLS、BPNN、基于PLS的BPNN(PLS - BPNN)和递归PLS(RPLS)进行比较。对于烟气中二氧化碳浓度的预测,所提出模型的预测均方根误差(RMSEP)分别比PLS、BPNN、PLS - BPNN和RPLS降低了27.27%、58.12%、19.24%和14.26%。对于烟气中一氧化碳浓度的预测,所提出模型的RMSEP分别比PLS、BPNN、PLS - BPNN和RPLS降低了20.65%、24.69%、18.54%和19.42%。对于烟气中甲烷浓度的预测,所提出模型的RMSEP分别比PLS、BPNN、PLS - BPNN和RPLS降低了27.56%、37.76%、8.63%和3.20%。实验结果表明,所提出的模型可以通过PLS优化BPNN的结构和初始权重,具有较高的预测有效性。此外,基于已建立模型的信息,所提出的模型使用新样本进行增量更新,无需访问历史样本。因此,所提出的模型具有更好的鲁棒性和泛化能力。

相似文献

3
A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.
ScientificWorldJournal. 2014 Mar 19;2014:418674. doi: 10.1155/2014/418674. eCollection 2014.
7
[Study on influence of gamma-ray treatment on spectral characteristic of rapeseed].
Guang Pu Xue Yu Guang Pu Fen Xi. 2008 Nov;28(11):2540-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验