Suppr超能文献

三种多元校正方法用于通过可见光谱估计叶片花青素含量的预测能力比较 。 (注:原文句末的“in.”表述不完整,这里只能按现有内容尽量准确翻译)

Comparison of prediction power of three multivariate calibrations for estimation of leaf anthocyanin content with visible spectroscopy in .

作者信息

Liu Xiuying, Liu Chenzhou, Shi Zhaoyong, Chang Qingrui

机构信息

College of Agriculture, Henan University of Science and Technology, Luoyang, Henan, China.

Luoyang Key Laboratory of Symbiotic Microorganism and Green Development/Luoyang Key Laboratory of Plant Nutrition and Environmental Ecology, Luoyang, Henan Province, China.

出版信息

PeerJ. 2019 Oct 31;7:e7997. doi: 10.7717/peerj.7997. eCollection 2019.

Abstract

The anthocyanin content in leaves can reveal valuable information about a plant's physiological status and its responses to stress. Therefore, it is of great value to accurately and efficiently determine anthocyanin content in leaves. The selection of calibration method is a major factor which can influence the accuracy of measurement with visible and near infrared (NIR) spectroscopy. Three multivariate calibrations including principal component regression (PCR), partial least squares regression (PLSR), and back-propagation neural network (BPNN) were adopted for the development of determination models of leaf anthocyanin content using reflectance spectra data (450-600 nm) in and then the performance of these models was compared for three multivariate calibrations. Certain principal components (PCs) and latent variables (LVs) were used as input for the back-propagation neural network (BPNN) model. The results showed that the best PCR and PLSR models were obtained by standard normal variate (SNV), and BPNN models outperformed both the PCR and PLSR models. The coefficient of determination (R), the root mean square error of prediction (RMSE), and the residual prediction deviation (RPD) values for the validation set were 0.920, 0.274, and 3.439, respectively, for the BPNN-PCs model, and 0.922, 0.270, and 3.489, respectively, for the BPNN-LVs model. Visible spectroscopy combined with BPNN was successfully applied to determine leaf anthocyanin content in and the performance of the BPNN-LVs model was the best. The use of the BPNN-LVs model and visible spectroscopy showed significant potential for the nondestructive determination of leaf anthocyanin content in plants.

摘要

叶片中的花青素含量能够揭示有关植物生理状态及其对胁迫反应的有价值信息。因此,准确、高效地测定叶片中的花青素含量具有重要价值。校准方法的选择是影响可见近红外(NIR)光谱测量准确性的一个主要因素。采用主成分回归(PCR)、偏最小二乘回归(PLSR)和反向传播神经网络(BPNN)三种多元校准方法,利用[具体范围]内的反射光谱数据(450 - 600 nm)建立叶片花青素含量测定模型,然后比较这三种多元校准模型的性能。某些主成分(PCs)和潜变量(LVs)被用作反向传播神经网络(BPNN)模型的输入。结果表明,通过标准正态变量变换(SNV)得到了最佳的PCR和PLSR模型,且BPNN模型的性能优于PCR和PLSR模型。对于验证集,BPNN - PCs模型的决定系数(R)、预测均方根误差(RMSE)和残差预测偏差(RPD)值分别为0.920、0.274和3.439,BPNN - LVs模型的相应值分别为0.922、0.270和3.489。可见光谱结合BPNN成功应用于[具体范围]内叶片花青素含量的测定,且BPNN - LVs模型性能最佳。BPNN - LVs模型和可见光谱的应用在植物叶片花青素含量的无损测定方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9326/6825749/643d0df6f1fd/peerj-07-7997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验