Nakano Shintaro, Ishii Isao, Shinmura Ken, Tamaki Kayoko, Hishiki Takako, Akahoshi Noriyuki, Ida Tomoaki, Nakanishi Tsuyoshi, Kamata Shotaro, Kumagai Yoshito, Akaike Takaaki, Fukuda Keiichi, Sano Motoaki, Suematsu Makoto
Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.
J Mol Med (Berl). 2015 Aug;93(8):879-89. doi: 10.1007/s00109-015-1271-5. Epub 2015 Mar 6.
Elevated plasma homocysteine levels are considered an independent risk factor for cardiovascular diseases. Experimental evidence has shown that hydrogen sulfide anion (HS(-)) protects the myocardium from ischemia/reperfusion (IR) injury. Both homocysteine levels and endogenous HS(-) production are mainly regulated by two transsulfuration enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH). We hypothesized that the transsulfuration pathway plays essential roles in the development of cardiac adaptive responses against ischemia, and investigated the roles of homocysteine, HS(-), and transsulfuration enzymes in fasting-induced cardioprotection against IR injury utilizing hyperhomocysteinemic Cbs (-/-) and Cth (-/-) mice. Langendorff-perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. Two-day fasting ameliorated left ventricular dysfunction after reperfusion via propargylglycine- and glibenclamide-sensitive pathways in wild-type mice but not in Cbs (-/-) or Cth (-/-) mice, although fasting induced cardiac expression of several Nrf2 target antioxidant genes in both wild-type and Cth (-/-) mice. Intraperitoneal administration of sodium hydrosulfide (a HS(-) donor) at 24 h prior to IR improved myocardial recovery in wild-type mice but not in Cth (-/-) or high-methionine-diet-fed (thus intermediately hyperhomocysteinemic) wild-type mice. Quantitative analysis of reactive sulfur species using monobromobimane derivatization methods revealed that homocysteine efficiently captures HS(-) to form homocysteine persulfide in the hearts as well as in the in vitro reactions. Here we propose a novel molecular and pathophysiological basis for hyperhomocysteinemia; excessive circulatory homocysteine interferes with HS(-)-related cardioprotection against IR injury by capturing endogenous HS(-) to form homocysteine persulfide.
Two-day fasting of mice ameliorates ischemia/reperfusion injury in Langendorff hearts. H2S-producing enzymes, CBS and CTH, are essential in fasting-induced cardioprotection. Administration of a H2S donor (NaHS) confers cardioprotection against IR injury. NaHS effects are absent in Cth (-/-), Cbs (-/-), and dietary hyperhomocysteinemic mice. Homocysteine captures cardioprotective HS(-) to form homocysteine persulfide.
血浆同型半胱氨酸水平升高被认为是心血管疾病的独立危险因素。实验证据表明,硫化氢阴离子(HS(-))可保护心肌免受缺血/再灌注(IR)损伤。同型半胱氨酸水平和内源性HS(-)生成主要受两种转硫酶调节,即胱硫醚β-合酶(CBS)和胱硫醚γ-裂解酶(CTH)。我们假设转硫途径在心脏对缺血的适应性反应发展中起关键作用,并利用高同型半胱氨酸血症的Cbs (-/-)和Cth (-/-)小鼠研究了同型半胱氨酸、HS(-)和转硫酶在禁食诱导的对IR损伤的心脏保护中的作用。采用Langendorff灌注心脏,使其经历25分钟的全心缺血,随后再灌注60分钟。两天禁食通过野生型小鼠中对炔丙基甘氨酸和格列本脲敏感的途径改善了再灌注后的左心室功能障碍,但在Cbs (-/-)或Cth (-/-)小鼠中未出现这种情况,尽管禁食在野生型和Cth (-/-)小鼠中均诱导了几种Nrf2靶标抗氧化基因的心脏表达。在IR前24小时腹腔注射硫氢化钠(一种HS(-)供体)可改善野生型小鼠的心肌恢复,但在Cth (-/-)或高蛋氨酸饮食喂养(因此处于中度高同型半胱氨酸血症)的野生型小鼠中未出现这种情况。使用一溴二苯甲烷衍生化方法对活性硫物种进行定量分析表明,同型半胱氨酸在心脏以及体外反应中能有效捕获HS(-)以形成同型半胱氨酸过硫化物。在此,我们提出了高同型半胱氨酸血症的一种新的分子和病理生理基础;循环中过量的同型半胱氨酸通过捕获内源性HS(-)以形成同型半胱氨酸过硫化物,干扰了与HS(-)相关的对IR损伤的心脏保护作用。
小鼠两天禁食可改善Langendorff心脏的缺血/再灌注损伤。产生H2S的酶CBS和CTH在禁食诱导的心脏保护中至关重要。给予H2S供体(NaHS)可赋予对IR损伤的心脏保护作用。在Cth (-/-)、Cbs (-/-)和饮食性高同型半胱氨酸血症小鼠中不存在NaHS的作用。同型半胱氨酸捕获具有心脏保护作用的HS(-)以形成同型半胱氨酸过硫化物。