Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Antioxid Redox Signal. 2023 Nov;39(13-15):983-999. doi: 10.1089/ars.2023.0405. Epub 2023 Sep 19.
Persulfides/polysulfides are sulfur-catenated molecular species (, R-S-R', > 2; R-S-H, > 1, with R = cysteine, glutathione, and proteins), such as cysteine persulfide (CysSSH). These species are abundantly formed as endogenous metabolites in mammalian and human cells and tissues. However, the persulfide synthesis mechanism has yet to be thoroughly discussed. We used β-(4-hydroxyphenyl)ethyl iodoacetamide and mass spectrometry to develop sulfur metabolomics, a highly precise, quantitative analytical method for sulfur metabolites. With this method, we detected appreciable amounts of different persulfide species in biological specimens from various organisms, from the domains Bacteria, Archaea, and Eukarya. By using our rigorously quantitative approach, we identified cysteinyl-tRNA synthetase (CARS) as a novel persulfide synthase, and we found that the CysSSH synthase activity of CARS is highly conserved from the domains Bacteria to Eukarya. Because persulfide synthesis is found not only with CARS but also with other sulfotransferase enzymes in many organisms, persulfides/polysulfides are expected to contribute as fundamental elements to substantially diverse biological phenomena. In fact, persulfide generation in higher organisms-that is, plants and animals-demonstrated various physiological functions that are mediated by redox signaling, such as regulation of energy metabolism, infection, inflammation, and cell death, including ferroptosis. Investigating CARS-dependent persulfide production may clarify various pathways of redox signaling in physiological and pathophysiological conditions and may thereby promote the development of preventive and therapeutic measures for oxidative stress as well as different inflammatory, metabolic, and neurodegenerative diseases. 39, 983-999.
过硫化合物/多硫化合物是硫原子连接的分子种类(,R-S-R', > 2;R-S-H, > 1,其中 R = 半胱氨酸、谷胱甘肽和蛋白质),如半胱氨酸过硫化合物(CysSSH)。这些物质作为内源性代谢物在哺乳动物和人类细胞和组织中大量形成。然而,过硫化合物的合成机制尚未得到彻底讨论。我们使用 β-(4-羟基苯基)乙基碘乙酰胺和质谱法开发了硫代谢组学,这是一种用于硫代谢物的高度精确、定量分析方法。使用这种方法,我们在来自不同生物体的生物标本中检测到了大量不同的过硫化合物。通过使用我们严格定量的方法,我们确定了半胱氨酰-tRNA 合成酶(CARS)是一种新的过硫化合物合成酶,并且我们发现 CARS 的 CysSSH 合成酶活性在细菌到真核生物的各个领域都具有高度保守性。由于过硫化合物的合成不仅在 CARS 中发现,而且在许多生物体中的其他磺基转移酶中也发现了过硫化合物/多硫化合物,因此它们有望作为基本元素参与到大量不同的生物学现象中。事实上,高等生物(即植物和动物)中的过硫化合物的生成表现出了各种由氧化还原信号介导的生理功能,如能量代谢、感染、炎症和细胞死亡(包括铁死亡)的调节。研究 CARS 依赖性过硫化合物的生成可能阐明生理和病理生理条件下氧化还原信号的各种途径,并由此促进预防和治疗氧化应激以及不同炎症、代谢和神经退行性疾病的措施的发展。39, 983-999。