Rodrigo Albors Aida, Tanaka Elly M
DFG Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany.
Methods Mol Biol. 2015;1290:115-25. doi: 10.1007/978-1-4939-2495-0_9.
Axolotls are well known for their remarkable ability to regenerate complex body parts and structures throughout life, including the entire limb and tail. Particularly fascinating is their ability to regenerate a fully functional spinal cord after losing the tail. Electroporation of DNA plasmids or morpholinos is a valuable tool to gain mechanistic insight into the cellular and molecular basis of regeneration. It provides among other advantages a simple and fast method to test gene function in a temporally and spatially controlled manner. Some classic drawbacks of the method, such as low transfection efficiency and damage to the tissue, had hindered our understanding of the contribution of different signaling pathways to regeneration. Here, we describe a comprehensive protocol for electroporation of the axolotl spinal cord that overcomes this limitations using a combination of high-voltage and short-length pulses followed by lower-voltage and longer-length pulses. Our approach yields highly efficient transfection of spinal cord cells with minimal tissue damage, which now allows the molecular dissection of spinal cord regeneration.
美西螈以其在整个生命周期中再生复杂身体部位和结构的非凡能力而闻名,包括整个肢体和尾巴。特别令人着迷的是它们在失去尾巴后能够再生出功能完全正常的脊髓。DNA质粒或吗啉代寡核苷酸的电穿孔是深入了解再生的细胞和分子基础机制的宝贵工具。它具有诸多优点,提供了一种以时间和空间可控的方式测试基因功能的简单快速方法。该方法的一些经典缺点,如转染效率低和对组织的损伤,阻碍了我们对不同信号通路在再生过程中作用的理解。在这里,我们描述了一种用于美西螈脊髓电穿孔的综合方案,该方案通过结合高压和短脉冲以及随后的低压和长脉冲来克服这些限制。我们的方法能够在对组织损伤最小的情况下高效转染脊髓细胞,这使得对脊髓再生进行分子剖析成为可能。