B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany.
Cell. 2015 Mar 12;160(6):1159-68. doi: 10.1016/j.cell.2015.01.051. Epub 2015 Mar 5.
Cytoskeletal remodeling is essential to eukaryotic cell division and morphogenesis. The mechanical forces driving the restructuring are attributed to the action of molecular motors and the dynamics of cytoskeletal filaments, which both consume chemical energy. By contrast, non-enzymatic filament crosslinkers are regarded as mere friction-generating entities. Here, we experimentally demonstrate that diffusible microtubule crosslinkers of the Ase1/PRC1/Map65 family generate directed microtubule sliding when confined between partially overlapping microtubules. The Ase1-generated forces, directly measured by optical tweezers to be in the piconewton-range, were sufficient to antagonize motor-protein driven microtubule sliding. Force generation is quantitatively explained by the entropic expansion of confined Ase1 molecules diffusing within the microtubule overlaps. The thermal motion of crosslinkers is thus harnessed to generate mechanical work analogous to compressed gas propelling a piston in a cylinder. As confinement of diffusible proteins is ubiquitous in cells, the associated entropic forces are likely of importance for cellular mechanics beyond cytoskeletal networks.
细胞骨架重排对于真核细胞的分裂和形态发生至关重要。推动这种重排的力归因于分子马达的作用和细胞骨架丝的动力学,它们都消耗化学能量。相比之下,非酶性丝交联剂被认为只是产生摩擦力的实体。在这里,我们通过实验证明,Ase1/PRC1/Map65 家族的可扩散微管交联剂在部分重叠的微管之间受到限制时会产生定向的微管滑动。通过光学镊子直接测量到的 Ase1 产生的力在皮牛顿范围内足以拮抗马达蛋白驱动的微管滑动。通过对在微管重叠处扩散的受限 Ase1 分子的熵膨胀进行定量解释,产生了力。因此,交联剂的热运动被用来产生类似于压缩气体推动气缸中的活塞的机械功。由于可扩散蛋白质的限制在细胞中无处不在,因此相关的熵力对于细胞力学超出细胞骨架网络可能很重要。