Suppr超能文献

Ase1 选择性地增加了反平行微管重叠的寿命。

Ase1 selectively increases the lifetime of antiparallel microtubule overlaps.

机构信息

Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czechia; B CUBE - Center of Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany; Faculty of Science, Charles University in Prague, 12800 Prague, Czech Republic.

Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR144, Paris, France.

出版信息

Curr Biol. 2024 Sep 9;34(17):4071-4080.e6. doi: 10.1016/j.cub.2024.07.055. Epub 2024 Aug 12.

Abstract

Microtubules (MTs) are dynamically unstable polar biopolymers switching between periods of polymerization and depolymerization, with the switch from the polymerization to the depolymerization phase termed catastrophe and the reverse transition termed rescue. In presence of MT-crosslinking proteins, MTs form parallel or anti-parallel overlaps and self-assemble reversibly into complex networks, such as the mitotic spindle. Differential regulation of MT dynamics in parallel and anti-parallel overlaps is critical for the self-assembly of these networks. Diffusible MT crosslinkers of the Ase1/MAP65/PRC1 family associate with different affinities to parallel and antiparallel MT overlaps, providing a basis for this differential regulation. Ase1/MAP65/PRC1 family proteins directly affect MT dynamics and recruit other proteins that locally alter MT dynamics, such as CLASP or kinesin-4. However, how Ase1 differentially regulates MT stability in parallel and antiparallel bundles is unknown. Here, we show that Ase1 selectively promotes antiparallel MT overlap longevity by slowing down the depolymerization velocity and by increasing the rescue frequency, specifically in antiparallelly crosslinked MTs. At the retracting ends of depolymerizing MTs, concomitant with slower depolymerization, we observe retention and accumulation of Ase1 between crosslinked MTs and on isolated MTs. We hypothesize that the ability of Ase1 to reduce the dissociation of tubulin subunits is sufficient to promote its enrichment at MT ends. A mathematical model built on this idea shows good agreement with the experiments. We propose that differential regulation of MT dynamics by Ase1 contributes to mitotic spindle assembly by specifically stabilizing antiparallel overlaps, compared to parallel overlaps or isolated MTs.

摘要

微管(MTs)是一种动态不稳定的极性生物聚合物,在聚合和去聚合之间切换,从聚合到去聚合的转变称为崩溃,而相反的转变称为救援。在 MT 交联蛋白存在的情况下,MT 形成平行或反平行重叠,并可逆地自我组装成复杂的网络,如有丝分裂纺锤体。在平行和反平行重叠中对 MT 动力学的差异调节对于这些网络的自组装至关重要。Ase1/MAP65/PRC1 家族的可扩散 MT 交联蛋白以不同的亲和力与平行和反平行 MT 重叠结合,为这种差异调节提供了基础。Ase1/MAP65/PRC1 家族蛋白直接影响 MT 动力学,并招募其他局部改变 MT 动力学的蛋白质,如 CLASP 或 kinesin-4。然而,Ase1 如何在平行和反平行束中差异调节 MT 稳定性尚不清楚。在这里,我们表明 Ase1 通过减缓去聚合速度和增加救援频率,选择性地促进反平行 MT 重叠的寿命,特别是在反平行交联的 MT 中。在去聚合 MT 的缩回末端,与较慢的去聚合同时,我们观察到 Ase1 在交联 MT 之间和分离的 MT 上保留和积累。我们假设 Ase1 减少微管蛋白亚基解离的能力足以促进其在 MT 末端的富集。基于这一想法建立的数学模型与实验结果吻合较好。我们提出,Ase1 对 MT 动力学的差异调节有助于有丝分裂纺锤体的组装,特别是通过特异性稳定反平行重叠,而不是平行重叠或分离的 MT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验