Suppr超能文献

由天然噬菌体重组酶GP35介导的、基于PCR的单链DNA在枯草芽孢杆菌中的高效重组工程系统。

A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.

作者信息

Sun Zhaopeng, Deng Aihua, Hu Ting, Wu Jie, Sun Qinyun, Bai Hua, Zhang Guoqiang, Wen Tingyi

机构信息

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

Appl Microbiol Biotechnol. 2015 Jun;99(12):5151-62. doi: 10.1007/s00253-015-6485-5. Epub 2015 Mar 8.

Abstract

Bacillus subtilis and its closely related species are important strains for industry, agriculture, and medicine. However, it is difficult to perform genetic manipulations using the endogenous recombination machinery. In many bacteria, phage recombineering systems have been employed to improve recombineering frequencies. To date, an efficient phage recombineering system for B. subtilis has not been reported. Here, we, for the first time, identified that GP35 from the native phage SPP1 exhibited a high recombination activity in B. subtilis. On this basis, we developed a high-efficiency GP35-meditated recombineering system. Taking single-stranded DNA (ssDNA) as a recombineering substrate, ten recombinases from diverse sources were investigated in B. subtilis W168. GP35 showed the highest recombineering frequency (1.71 ± 0.15 × 10(-1)). Besides targeting the purine nucleoside phosphorylase gene (deoD), we also demonstrated the utility of GP35 and Beta from Escherichia coli lambda phage by deleting the alpha-amylase gene (amyE) and uracil phosphoribosyltransferase gene (upp). In all three genetic loci, GP35 exhibited a higher frequency than Beta. Moreover, a phylogenetic tree comparing the kinship of different recombinase hosts with B. subtilis was constructed, and the relationship between the recombineering frequency and the kinship of the host was further analyzed. The results suggested that closer kinship to B. subtilis resulted in higher frequency in B. subtilis. In conclusion, the recombinase from native phage or prophage can significantly promote the genetic recombineering frequency in its host, providing an effective genetic tool for constructing genetically engineered strains and investigating bacterial physiology.

摘要

枯草芽孢杆菌及其近缘物种是工业、农业和医学领域的重要菌株。然而,利用内源性重组机制进行基因操作较为困难。在许多细菌中,噬菌体重组工程系统已被用于提高重组频率。迄今为止,尚未报道过一种高效的枯草芽孢杆菌噬菌体重组工程系统。在此,我们首次发现来自天然噬菌体SPP1的GP35在枯草芽孢杆菌中表现出高重组活性。在此基础上,我们开发了一种高效的GP35介导的重组工程系统。以单链DNA(ssDNA)作为重组工程底物,在枯草芽孢杆菌W168中研究了来自不同来源的十种重组酶。GP35显示出最高的重组频率(1.71±0.15×10(-1))。除了靶向嘌呤核苷磷酸化酶基因(deoD)外,我们还通过缺失α-淀粉酶基因(amyE)和尿嘧啶磷酸核糖转移酶基因(upp)证明了来自大肠杆菌λ噬菌体的GP35和Beta的实用性。在所有三个基因位点中,GP35的频率均高于Beta。此外,构建了比较不同重组酶宿主与枯草芽孢杆菌亲缘关系的系统发育树,并进一步分析了重组频率与宿主亲缘关系之间的关系。结果表明,与枯草芽孢杆菌亲缘关系越近,在枯草芽孢杆菌中的频率越高。总之,来自天然噬菌体或原噬菌体的重组酶可显著提高其宿主中的基因重组频率,为构建基因工程菌株和研究细菌生理学提供了一种有效的遗传工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验