Suppr超能文献

乙醛酸循环对于红平红球菌N9T-4在需要二氧化碳的贫营养条件下生长至关重要。

The glyoxylate shunt is essential for CO2-requiring oligotrophic growth of Rhodococcus erythropolis N9T-4.

作者信息

Yano Takanori, Yoshida Nobuyuki, Yu Fujio, Wakamatsu Miki, Takagi Hiroshi

机构信息

Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.

出版信息

Appl Microbiol Biotechnol. 2015 Jul;99(13):5627-37. doi: 10.1007/s00253-015-6500-x. Epub 2015 Mar 10.

Abstract

Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth requiring atmospheric CO2 and forms its colonies on an inorganic basal medium (BM) without any additional carbon source. Screening of a random mutation library constructed by a unique genome deletion method that we established indicated that the aceA, aceB, and pckG genes encoding isocitrate lyase, malate synthase, and phosphoenolpyruvate carboxykinase, respectively, were requisite for survival on BM plates. The aceA- and aceB deletion mutants and the pckG deletion mutant grew well on BM plates containing L-malate and D-glucose, respectively, suggesting that the glyoxylate (GO) shunt and gluconeogenesis are essential for the oligotrophic growth of N9T-4. Interestingly, most of the enzyme activities in the TCA cycle were observed in the cell-free extract of N9T-4, with perhaps the most important exception being α-ketoglutarate dehydrogenase (KGDH) activity. Instead of the KGDH activity, we detected a remarkable level of α-ketoglutarate decarboxylase (KGD) activity, which is the activity exhibited by the E1 component of the KGDH complex in Mycobacterium tuberculosis. The recombinant KGD of N9T-4 catalyzed the decarboxylation of α-ketoglutarate to form succinic semialdehyde (SSA) in a time-dependent manner. Since N9T-4 also showed a detectable SSA dehydrogenase activity, we concluded that N9T-4 possesses a variant TCA cycle, which uses SSA rather than succinyl-CoA. These results suggest that oligotrophic N9T-4 cells utilize the GO shunt to avoid the loss of carbons as CO2 and to conserve CoA units in the TCA cycle.

摘要

红平红球菌N9T-4表现出极端贫营养生长,需要大气中的二氧化碳,并能在无任何额外碳源的无机基础培养基(BM)上形成菌落。对通过我们建立的独特基因组缺失方法构建的随机突变文库进行筛选表明,分别编码异柠檬酸裂解酶、苹果酸合酶和磷酸烯醇式丙酮酸羧激酶的aceA、aceB和pckG基因是在BM平板上存活所必需的。aceA和aceB缺失突变体以及pckG缺失突变体分别在含有L-苹果酸和D-葡萄糖的BM平板上生长良好,这表明乙醛酸(GO)分流和糖异生对于N9T-4的贫营养生长至关重要。有趣的是,三羧酸循环中的大多数酶活性在N9T-4的无细胞提取物中被观察到,可能最重要的例外是α-酮戊二酸脱氢酶(KGDH)活性。我们检测到显著水平的α-酮戊二酸脱羧酶(KGD)活性,而不是KGDH活性,这是结核分枝杆菌中KGDH复合物E1组分所表现出的活性。N9T-4的重组KGD以时间依赖性方式催化α-酮戊二酸脱羧形成琥珀半醛(SSA)。由于N9T-4也表现出可检测到的SSA脱氢酶活性,我们得出结论,N9T-4拥有一种变体三羧酸循环,该循环使用SSA而非琥珀酰辅酶A。这些结果表明,贫营养的N9T-4细胞利用GO分流来避免碳以二氧化碳形式损失,并在三羧酸循环中保存辅酶A单位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验