Suppr超能文献

增强葡萄糖传感器模型:建模失效率。

Enhancing glucose sensor models: modeling the drop-outs.

机构信息

1 Institut de Recherches Cliniques de Montréal , Montreal, Quebec, Canada .

出版信息

Diabetes Technol Ther. 2015 Jun;17(6):420-6. doi: 10.1089/dia.2014.0309. Epub 2015 Mar 9.

Abstract

BACKGROUND

Computer simulation environments have been used in the development of many artificial pancreas systems. A glucose sensor model is an essential part of these environments, and different models have been proposed. However, not one of these models accounts for drop-outs of sensor readings, a well-known phenomenon caused by physical pressure on the sensor site. In this work, we have proposed an enhanced model that accounts for drop-outs and demonstrated its improvement over the existing one-compartment model.

MATERIALS AND METHODS

Potential drop-outs were augmented to the existing model, and their incidences and magnitudes were estimated simultaneously with the model parameters using the Bayesian approach. Drop-outs and model parameters were estimated from data collected from 15 subjects with type 1 diabetes who underwent an artificial pancreas study. Model fitting and parameter estimates were contrasted between the enhanced model and the existing one-compartment model.

RESULTS

Both models achieved similar parameter estimates (P=not significant) and were all physiologically plausible. The enhanced model further estimated 1.71 drop-outs per day, which improved model fit (weighted residual reduced from [minimum -4%, maximum 3%] to [-3%, 2%]) and reduced significantly the deviance information criteria from 2739.72 to 1456.00.

CONCLUSIONS

The enhanced model improves fitting of glucose levels and should allow more realistic simulations that assesses artificial pancreas systems.

摘要

背景

计算机模拟环境已被用于许多人工胰腺系统的开发。葡萄糖传感器模型是这些环境的重要组成部分,已经提出了不同的模型。然而,这些模型都没有考虑到传感器读数的丢失,这是一个由于传感器位置受到物理压力而导致的众所周知的现象。在这项工作中,我们提出了一个改进的模型,该模型考虑了传感器读数的丢失,并证明了其相对于现有的单室模型的改进。

材料和方法

将潜在的传感器读数丢失情况添加到现有的模型中,并使用贝叶斯方法同时估计模型参数和丢失的发生率和幅度。从 15 名 1 型糖尿病患者在接受人工胰腺研究期间收集的数据中估计了丢失情况和模型参数。对比了增强模型和现有的单室模型的模型拟合和参数估计。

结果

两种模型都获得了相似的参数估计值(P=无显著性差异),并且都是符合生理的。增强模型进一步估计了每天 1.71 次的传感器读数丢失情况,这改善了模型拟合(加权残差从[最小值-4%,最大值 3%]变为[-3%,2%]),并显著降低了偏差信息标准从 2739.72 到 1456.00。

结论

增强模型提高了血糖水平的拟合度,应该允许进行更现实的模拟,从而评估人工胰腺系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验