Visentin Roberto, Man Chiara Dalla, Cobelli Claudio
IEEE Trans Biomed Eng. 2016 Nov;63(11):2416-2424. doi: 10.1109/TBME.2016.2535241. Epub 2016 Feb 26.
The UVA/Padova Type 1 Diabetes (T1DM) Simulator has been shown to be representative of a T1DM population observed in a clinical trial, but has not yet been identified on T1DM data. Moreover, the current version of the simulator is "single meal" while making it "single-day centric," i.e., by describing intraday variability, would be a step forward to create more realistic in silico scenarios. Here, we propose a Bayesian method for the identification of the model from plasma glucose and insulin concentrations only, by exploiting the prior model parameter distribution.
The database consists of 47 T1DM subjects, who received dinner, breakfast, and lunch (respectively, 80, 50, and 60 CHO grams) in three 23-h occasions (one open- and one closed-loop). The model is identified using the Bayesian Maximum a Posteriori technique, where the prior parameter distribution is that of the simulator. Diurnal variability of glucose absorption and insulin sensitivity is allowed.
The model well describes glucose traces (coefficient of determination R = 0.962 ± 0.027 ) and the posterior parameter distribution is similar to that included in the simulator. Absorption parameters at breakfast are significantly different from those at lunch and dinner, reflecting more rapid dynamics of glucose absorption. Insulin sensitivity varies in each individual but without a specific pattern.
The incorporation of glucose absorption and insulin sensitivity diurnal variability into the simulator makes it more realistic.
The proposed method, applied to the increasing number of long-term artificial pancreas studies, will allow to describe week/month variability, thus further refining the simulator.
UVA/帕多瓦1型糖尿病(T1DM)模拟器已被证明能够代表在一项临床试验中观察到的T1DM人群,但尚未在T1DM数据上得到验证。此外,当前版本的模拟器是“单餐”模式,而使其成为“以单日为中心”,即通过描述日内变异性,将是朝着创建更逼真的计算机模拟场景迈出的一步。在此,我们提出一种贝叶斯方法,仅通过利用先验模型参数分布,从血浆葡萄糖和胰岛素浓度来识别模型。
数据库包含47名T1DM受试者,他们在三个23小时的时间段(一个开放环和一个闭环)分别接受晚餐、早餐和午餐(分别含80、50和60克碳水化合物)。使用贝叶斯最大后验技术识别模型,其中先验参数分布为模拟器的分布。允许葡萄糖吸收和胰岛素敏感性的昼夜变异性。
该模型能很好地描述葡萄糖轨迹(决定系数R = 0.962±0.027),后验参数分布与模拟器中的相似。早餐时的吸收参数与午餐和晚餐时的显著不同,反映出葡萄糖吸收的动力学更快。胰岛素敏感性在每个个体中有所变化,但无特定模式。
将葡萄糖吸收和胰岛素敏感性的昼夜变异性纳入模拟器使其更具现实性。
所提出的方法应用于越来越多的长期人工胰腺研究中,将能够描述周/月变异性,从而进一步完善模拟器。