Kamran Muhammad, Friebe Vincent M, Delgado Juan D, Aartsma Thijs J, Frese Raoul N, Jones Michael R
Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.
Department of Physics and Astronomy, LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
Nat Commun. 2015 Mar 9;6:6530. doi: 10.1038/ncomms7530.
Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein-cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored.
光合反应中心有望成为生物分子电子学中的纳米级太阳能电池和分子二极管,能够进行原子级的重新设计。在这项工作中,通过导电原子力显微镜对高度易处理的球形红细菌反应中心的电子传导机制进行了表征。我们发现,使用已知结构的工程蛋白,在适当定向的偏压下,连接该反应中心正负极的两条辅因子线中只有一条能够传导单向电流,而与偏压的大小或隧道结处施加的力无关。这种行为,即在基本对称的蛋白质 - 辅因子矩阵中存在强烈的功能不对称性,重现了自然光化学电荷分离的强烈功能不对称特征,但鉴于电子流动的刺激仅仅是外部施加的偏压,这一点令人惊讶。我们探讨了所谓的B型辅因子线显示电阻的原因。