Department of Chemistry, Washington University, St. Louis, MO 63130, United States of America.
Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States of America.
Biochim Biophys Acta Bioenerg. 2024 Aug 1;1865(3):149047. doi: 10.1016/j.bbabio.2024.149047. Epub 2024 Apr 29.
The rates, yields, mechanisms and directionality of electron transfer (ET) are explored in twelve pairs of Rhodobacter (R.) sphaeroides and R. capsulatus mutant RCs designed to defeat ET from the excited primary donor (P*) to the A-side cofactors and re-direct ET to the normally inactive mirror-image B-side cofactors. In general, the R. sphaeroides variants have larger PH yields (up to ∼90%) than their R. capsulatus analogs (up to ∼60%), where H is the B-side bacteriopheophytin. Substitution of Tyr for Phe at L-polypeptide position L181 near B primarily increases the contribution of fast P* → PB → PH two-step ET, where B is the "bridging" B-side bacteriochlorophyll. The second step (∼6-8 ps) is slower than the first (∼3-4 ps), unlike A-side two-step ET (P* → PB → PH) where the second step (∼1 ps) is faster than the first (∼3-4 ps) in the native RC. Substitutions near H, at L185 (Leu, Trp or Arg) and at M-polypeptide site M133/131 (Thr, Val or Glu), strongly affect the contribution of slower (20-50 ps) P* → PH one-step superexchange ET. Both ET mechanisms are effective in directing electrons "the wrong way" to H and both compete with internal conversion of P* to the ground state (∼200 ps) and ET to the A-side cofactors. Collectively, the work demonstrates cooperative amino-acid control of rates, yields and mechanisms of ET in bacterial RCs and how A- vs. B-side charge separation can be tuned in both species.
研究了十二对设计用于阻止从激发的原始供体 (P*) 到 A 侧辅助因子的电子转移 (ET) 并将 ET 重新引导至通常不活跃的镜像 B 侧辅助因子的 Rhodobacter (R.) sphaeroides 和 R. capsulatus 突变 RC 中 ET 的速率、产率、机制和方向性。一般来说,R. sphaeroides 变体的 PH 产率(高达约 90%)高于其 R. capsulatus 类似物(高达约 60%),其中 H 是 B 侧细菌菌绿素。在靠近 B 的 L 多肽位置 L181 处用 Tyr 取代 Phe 可主要增加快速 P*→PB→PH 两步 ET 的贡献,其中 B 是“桥接”B 侧细菌叶绿素。第二步(约 6-8 ps)比第一步(约 3-4 ps)慢,与 A 侧两步 ET(P*→PB→PH)不同,在天然 RC 中第二步(约 1 ps)比第一步(约 3-4 ps)快。在 H 附近、在 L185(Leu、Trp 或 Arg)和 M 多肽位点 M133/131(Thr、Val 或 Glu)处的取代强烈影响较慢(20-50 ps)P*→PH 一步超交换 ET 的贡献。这两种 ET 机制都有效地将电子“引导”到错误的方向到 H,并且都与 P* 到基态的内部转换(约 200 ps)和到 A 侧辅助因子的 ET 竞争。总的来说,这项工作证明了氨基酸在细菌 RC 中对 ET 速率、产率和机制的协同控制,以及如何在两种物种中调节 A-与 B-侧电荷分离。