Suppr超能文献

犬自发性鼻腔肿瘤放射治疗抗性的分子成像生物标志物

Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines.

作者信息

Bradshaw Tyler J, Bowen Stephen R, Deveau Michael A, Kubicek Lyndsay, White Pamela, Bentzen Søren M, Chappell Richard J, Forrest Lisa J, Jeraj Robert

机构信息

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.

Departments of Radiation Oncology and Radiology, University of Washington, Seattle, Washington.

出版信息

Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):787-95. doi: 10.1016/j.ijrobp.2014.12.011.

Abstract

PURPOSE

Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy.

METHODS AND MATERIALS

Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV(max); SUV(mean)) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R(2).

RESULTS

The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV(mean) (P=.018), and midtreatment FLT SUV(max) (P=.006). Large decreases in FLT SUV(mean) from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV(max) (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041).

CONCLUSIONS

In addition to tumor volume, pronounced tumor proliferative response quantified using FLT PET, especially when associated with high residual FLT PET at midtreatment, is a negative prognostic biomarker of outcome in canine tumors following radiation therapy. Neither FDG PET nor Cu-ATSM PET were predictive of outcome.

摘要

目的

放射治疗抗性的成像生物标志物可为治疗管理提供信息并加以指导。迄今为止,大多数研究都集中在评估单一的成像生物标志物上。本研究的目的是探索多种不同的分子成像生物标志物作为放射治疗抗性的替代指标。

方法和材料

22例患有自发性鼻窦肿瘤的犬类患者接受了加速分割放射治疗,对大体肿瘤体积给予10次每次4.2 Gy或10次每次5.0 Gy的照射。患者在治疗前接受氟代脱氧葡萄糖(FDG)、氟代胸腺嘧啶核苷(FLT)和铜(II)-二乙酰双(N4-甲基硫代半卡巴腙)(Cu-ATSM)标记的正电子发射断层扫描/计算机断层扫描(PET/CT)成像,并在治疗期间接受FLT和Cu-ATSM PET/CT成像。除了常规的最大和平均标准化摄取值(SUV(max);SUV(mean))测量外,还为每位患者提取了提供反应和时空信息的成像指标。根据实体瘤反应评估标准评估无进展生存期。使用单变量Cox比例风险回归评估每个成像生物标志物的预后价值。由于患者数量有限,也进行了多变量分析,但仅限于2个预测变量。根据伪R(2)选择最佳双变量模型。

结果

根据单变量分析,以下变量与放射治疗后的不良临床结果显著相关:肿瘤体积(P = 0.011)、治疗中期FLT SUV(mean)(P = 0.018)和治疗中期FLT SUV(max)(P = 0.006)。从治疗前到治疗中期FLT SUV(mean)的大幅下降与更差的临床结果相关(P = 0.013)。在双变量模型中,预测不良结果的最佳双变量组合是治疗中期高FLT SUV(max)(P = 0.022)与从治疗前到治疗中期的大FLT反应(P = 0.041)。

结论

除肿瘤体积外,使用FLT PET量化的明显肿瘤增殖反应,特别是与治疗中期高残留FLT PET相关时,是犬类肿瘤放射治疗后结果的负面预后生物标志物。FDG PET和Cu-ATSM PET均不能预测结果。

相似文献

引用本文的文献

5
Advanced Cancer Imaging Applied in the Comparative Setting.应用于比较研究中的先进癌症成像技术。
Front Oncol. 2020 Feb 7;10:84. doi: 10.3389/fonc.2020.00084. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验