Suppr超能文献

在轻度和中度创伤性脑损伤的儿童和青少年中,胶质纤维酸性蛋白在计算机断层扫描中检测创伤性颅内病变方面比S100β表现更优。

In Children and Youth with Mild and Moderate Traumatic Brain Injury, Glial Fibrillary Acidic Protein Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography.

作者信息

Papa Linda, Mittal Manoj K, Ramirez Jose, Ramia Michelle, Kirby Sara, Silvestri Salvatore, Giordano Philip, Weber Kurt, Braga Carolina F, Tan Ciara N, Ameli Neema J, Lopez Marco, Zonfrillo Mark

机构信息

1 Department of Emergency Medicine, Orlando Regional Medical Center , Orlando, Florida.

2 Department of Pediatric Emergency Medicine, Arnold Palmer Hospital for Children , Orlando, Florida.

出版信息

J Neurotrauma. 2016 Jan 1;33(1):58-64. doi: 10.1089/neu.2015.3869. Epub 2015 Jun 3.

Abstract

In adults, glial fibrillary acidic protein (GFAP) has been shown to out-perform S100β in detecting intracranial lesions on computed tomography (CT) in mild traumatic brain injury (TBI). This study examined the ability of GFAP and S100β to detect intracranial lesions on CT in children and youth involved in trauma. This prospective cohort study enrolled a convenience sample of children and youth at two pediatric and one adult Level 1 trauma centers following trauma, including both those with and without head trauma. Serum samples were obtained within 6 h of injury. The primary outcome was the presence of traumatic intracranial lesions on CT scan. There were 155 pediatric trauma patients enrolled, 114 (74%) had head trauma and 41 (26%) had no head trauma. Out of the 92 patients who had a head CT, eight (9%) had intracranial lesions. The area under the receiver operating characteristic curve (AUC) for distinguishing head trauma from no head trauma for GFAP was 0.84 (0.77-0.91) and for S100β was 0.64 (0.55-0.74; p<0.001). Similarly, the AUC for predicting intracranial lesions on CT for GFAP was 0.85 (0.72-0.98) versus 0.67 (0.50-0.85) for S100β (p=0.013). Additionally, we assessed the performance of GFAP and S100β in predicting intracranial lesions in children ages 10 years or younger and found the AUC for GFAP was 0.96 (95% confidence interval [CI] 0.86-1.00) and for S100β was 0.72 (0.36-1.00). In children younger than 5 years old, the AUC for GFAP was 1.00 (95% CI 0.99-1.00) and for S100β 0.62 (0.15-1.00). In this population with mild TBI, GFAP out-performed S100β in detecting head trauma and predicting intracranial lesions on head CT. This study is among the first published to date to prospectively compare these two biomarkers in children and youth with mild TBI.

摘要

在成人中,研究表明,在轻度创伤性脑损伤(TBI)的计算机断层扫描(CT)中检测颅内病变时,胶质纤维酸性蛋白(GFAP)的表现优于S100β。本研究调查了GFAP和S100β在检测受创伤儿童和青少年颅内病变方面的能力。这项前瞻性队列研究纳入了两个儿科和一个成人一级创伤中心的儿童和青少年便利样本,这些儿童和青少年均遭受过创伤,包括有头部创伤和没有头部创伤的患者。在受伤后6小时内采集血清样本。主要结局是CT扫描上是否存在创伤性颅内病变。共纳入155例儿科创伤患者,其中114例(74%)有头部创伤,41例(26%)没有头部创伤。在进行头部CT检查的92例患者中,有8例(9%)存在颅内病变。GFAP区分有无头部创伤的受试者工作特征曲线(AUC)下面积为0.84(0.77 - 0.91),S100β的为0.64(0.55 - 0.74;p<0.001)。同样,GFAP预测CT上颅内病变的AUC为0.85(0.72 - 0.98),而S100β的为0.67(0.50 - 0.85)(p = 0.013)。此外,我们评估了GFAP和S100β在预测10岁及以下儿童颅内病变方面的表现,发现GFAP的AUC为0.96(95%置信区间[CI]0.86 - 1.00),S100β的为0.72(0.36 - 1.00)。在5岁以下儿童中,GFAP的AUC为1.00(95%CI 0.99 - 1.00),S100β的为0.62(0.15 - 1.00)。在这个轻度TBI人群中,GFAP在检测头部创伤和预测头部CT上的颅内病变方面表现优于S100β。本研究是迄今为止首次发表的前瞻性比较这两种生物标志物在轻度TBI儿童和青少年中的研究之一。

相似文献

9
NRGN, S100B and GFAP levels are significantly increased in patients with structural lesions resulting from mild traumatic brain injuries.
Clin Neurol Neurosurg. 2019 Aug;183:105380. doi: 10.1016/j.clineuro.2019.105380. Epub 2019 Jun 17.

引用本文的文献

1
Bridging neuro-biomarkers and MR imaging: The synergistic role of glial fibrillary acidic protein in early CNS disease diagnosis.
IBRO Neurosci Rep. 2025 May 3;18:739-753. doi: 10.1016/j.ibneur.2025.04.016. eCollection 2025 Jun.
2
Update on the role of S100B in traumatic brain injury in pediatric population: a meta-analysis.
Childs Nerv Syst. 2024 Nov;40(11):3745-3756. doi: 10.1007/s00381-024-06565-8. Epub 2024 Aug 23.
3
Inflammasome links traumatic brain injury, chronic traumatic encephalopathy, and Alzheimer's disease.
Neural Regen Res. 2025 Jun 1;20(6):1644-1664. doi: 10.4103/NRR.NRR-D-24-00107. Epub 2024 Jul 10.
5
Acute Fluid Biomarkers for Diagnosis and Prognosis in Children with Mild Traumatic Brain Injury: A Systematic Review.
Mol Diagn Ther. 2024 Mar;28(2):169-187. doi: 10.1007/s40291-023-00685-8. Epub 2023 Dec 22.
7
TXA does not affect levels of TBI-related biomarkers in blunt TBI with ICH: A secondary analysis of the prehospital TXA for TBI trial.
J Trauma Acute Care Surg. 2024 Jan 1;96(1):94-100. doi: 10.1097/TA.0000000000004130. Epub 2023 Oct 9.
8
Concussion: Beyond the Cascade.
Cells. 2023 Aug 22;12(17):2128. doi: 10.3390/cells12172128.
9
Prognostic and Diagnostic Utility of Serum Biomarkers in Pediatric Traumatic Brain Injury.
J Neurotrauma. 2024 Jan;41(1-2):106-122. doi: 10.1089/neu.2023.0039. Epub 2023 Nov 2.
10
Do astrocytes act as immune cells after pediatric TBI?
Neurobiol Dis. 2023 Sep;185:106231. doi: 10.1016/j.nbd.2023.106231. Epub 2023 Jul 17.

本文引用的文献

2
Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study.
Ann Emerg Med. 2014 Aug;64(2):145-52, 152.e1-5. doi: 10.1016/j.annemergmed.2014.01.030. Epub 2014 Mar 11.
4
Systematic review of clinical research on biomarkers for pediatric traumatic brain injury.
J Neurotrauma. 2013 Mar 1;30(5):324-38. doi: 10.1089/neu.2012.2545. Epub 2013 Feb 15.
6
GFAP and S100B in the acute phase of mild traumatic brain injury.
Neurology. 2012 May 1;78(18):1428-33. doi: 10.1212/WNL.0b013e318253d5c7. Epub 2012 Apr 18.
8
Biomarker-based dissection of neurodegenerative diseases.
Prog Neurobiol. 2011 Dec;95(4):520-34. doi: 10.1016/j.pneurobio.2011.04.006. Epub 2011 Apr 16.
9
Low plasma D-dimer concentration predicts the absence of traumatic brain injury in children.
J Trauma. 2010 May;68(5):1072-7. doi: 10.1097/TA.0b013e3181d7a6f2.
10
CATCH: a clinical decision rule for the use of computed tomography in children with minor head injury.
CMAJ. 2010 Mar 9;182(4):341-8. doi: 10.1503/cmaj.091421. Epub 2010 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验