Suppr超能文献

小儿轻度头部损伤的PECARN、CATCH和CHALICE规则比较:一项前瞻性队列研究。

Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study.

作者信息

Easter Joshua S, Bakes Katherine, Dhaliwal Jasmeet, Miller Michael, Caruso Emily, Haukoos Jason S

机构信息

Denver Emergency Center for Children, Department of Emergency Medicine, Denver Health, Denver, CO; Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO; Department of Emergency Medicine, Bon Secours St. Mary's Hospital, Richmond, VA; Department of Emergency Medicine, University of Virginia, Charlottesville, VA.

Denver Emergency Center for Children, Department of Emergency Medicine, Denver Health, Denver, CO; Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO.

出版信息

Ann Emerg Med. 2014 Aug;64(2):145-52, 152.e1-5. doi: 10.1016/j.annemergmed.2014.01.030. Epub 2014 Mar 11.

Abstract

STUDY OBJECTIVE

We evaluate the diagnostic accuracy of clinical decision rules and physician judgment for identifying clinically important traumatic brain injuries in children with minor head injuries presenting to the emergency department.

METHODS

We prospectively enrolled children younger than 18 years and with minor head injury (Glasgow Coma Scale score 13 to 15), presenting within 24 hours of their injuries. We assessed the ability of 3 clinical decision rules (Canadian Assessment of Tomography for Childhood Head Injury [CATCH], Children's Head Injury Algorithm for the Prediction of Important Clinical Events [CHALICE], and Pediatric Emergency Care Applied Research Network [PECARN]) and 2 measures of physician judgment (estimated of <1% risk of traumatic brain injury and actual computed tomography ordering practice) to predict clinically important traumatic brain injury, as defined by death from traumatic brain injury, need for neurosurgery, intubation greater than 24 hours for traumatic brain injury, or hospital admission greater than 2 nights for traumatic brain injury.

RESULTS

Among the 1,009 children, 21 (2%; 95% confidence interval [CI] 1% to 3%) had clinically important traumatic brain injuries. Only physician practice and PECARN identified all clinically important traumatic brain injuries, with ranked sensitivities as follows: physician practice and PECARN each 100% (95% CI 84% to 100%), physician estimates 95% (95% CI 76% to 100%), CATCH 91% (95% CI 70% to 99%), and CHALICE 84% (95% CI 60% to 97%). Ranked specificities were as follows: CHALICE 85% (95% CI 82% to 87%), physician estimates 68% (95% CI 65% to 71%), PECARN 62% (95% CI 59% to 66%), physician practice 50% (95% CI 47% to 53%), and CATCH 44% (95% CI 41% to 47%).

CONCLUSION

Of the 5 modalities studied, only physician practice and PECARN identified all clinically important traumatic brain injuries, with PECARN being slightly more specific. CHALICE was incompletely sensitive but the most specific of all rules. CATCH was incompletely sensitive and had the poorest specificity of all modalities.

摘要

研究目的

我们评估临床决策规则和医生判断对于识别急诊科就诊的轻度头部受伤儿童中具有临床重要性的创伤性脑损伤的诊断准确性。

方法

我们前瞻性纳入了年龄小于18岁且为轻度头部受伤(格拉斯哥昏迷量表评分为13至15分)、受伤后24小时内就诊的儿童。我们评估了3种临床决策规则(儿童头部损伤计算机断层扫描加拿大评估法[CATCH]、儿童重要临床事件预测头部损伤算法[CHALICE]和儿科急诊护理应用研究网络[PECARN])以及2种医生判断方法(估计创伤性脑损伤风险<1%和实际计算机断层扫描检查实践)预测具有临床重要性的创伤性脑损伤的能力,该损伤定义为因创伤性脑损伤死亡、需要神经外科手术、因创伤性脑损伤插管超过24小时或因创伤性脑损伤住院超过2晚。

结果

在1009名儿童中,21名(2%;95%置信区间[CI]1%至3%)患有具有临床重要性的创伤性脑损伤。只有医生的检查实践和PECARN识别出了所有具有临床重要性的创伤性脑损伤,其排序后的敏感性如下:医生的检查实践和PECARN均为100%(95%CI 84%至100%),医生的估计为95%(95%CI 76%至100%),CATCH为91%(95%CI 70%至99%),CHALICE为84%(95%CI 60%至97%)。排序后的特异性如下:CHALICE为85%(95%CI 82%至87%),医生的估计为68%(95%CI 65%至71%),PECARN为62%(95%CI 59%至66%),医生的检查实践为50%(95%CI 47%至53%),CATCH为44%(95%CI 41%至47%)。

结论

在所研究的5种方法中,只有医生的检查实践和PECARN识别出了所有具有临床重要性的创伤性脑损伤,其中PECARN的特异性略高。CHALICE的敏感性不完全,但在所有规则中特异性最高。CATCH的敏感性不完全,且在所有方法中特异性最差。

相似文献

引用本文的文献

2
Aligning Patient Safety and Stewardship: A Harm Reduction Strategy for Children.协调患者安全与管理:儿童减少伤害策略
Curr Treat Options Pediatr. 2021;7(3):138-151. doi: 10.1007/s40746-021-00227-6. Epub 2021 Jul 12.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验