Suppr超能文献

两种不同的DNA结合模式指导CRISPR-Cas蛋白复合体的双重作用。

Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex.

作者信息

Blosser Timothy R, Loeff Luuk, Westra Edze R, Vlot Marnix, Künne Tim, Sobota Małgorzata, Dekker Cees, Brouns Stan J J, Joo Chirlmin

机构信息

Kavli Institute of NanoScience and Department of BioNanoScience, Delft University of Technology, 2628 CJ, Delft, The Netherlands.

Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB, Wageningen, The Netherlands.

出版信息

Mol Cell. 2015 Apr 2;58(1):60-70. doi: 10.1016/j.molcel.2015.01.028. Epub 2015 Mar 5.

Abstract

Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses-interference and priming-remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets.

摘要

小RNA引导的蛋白质复合物在原核生物的CRISPR介导的免疫中起着至关重要的作用。虽然这些复合物通过标记同源入侵DNA进行破坏来启动干扰,但最近的证据表明它们参与了针对突变入侵序列的新的CRISPR记忆形成,即引发。靶标识别复合物介导这些不同反应(干扰和引发)的机制仍知之甚少。利用单分子荧光共振能量转移技术,我们可视化了大肠杆菌Cascade如何以不同方式探测真实靶标和突变靶标。我们观察到,对真实靶标的识别是一个有序过程,受到严格控制以保证高保真度。突变靶标以低保真度被识别,其特征是crRNA的任何片段进行短暂的、与PAM和种子无关的结合。Cascade在具有不同保真度的免疫中的这些双重作用支撑了CRISPR-Cas的稳健性,使得真实靶标能够被有效降解,突变DNA靶标能够被引发。

相似文献

3
CRISPR Immunological Memory Requires a Host Factor for Specificity.CRISPR 免疫记忆需要宿主因子来保证特异性。
Mol Cell. 2016 Jun 16;62(6):824-833. doi: 10.1016/j.molcel.2016.04.027. Epub 2016 May 19.

引用本文的文献

4
R-loop formation and conformational activation mechanisms of Cas9.R 环形成与 Cas9 的构象激活机制。
Nature. 2022 Sep;609(7925):191-196. doi: 10.1038/s41586-022-05114-0. Epub 2022 Aug 24.
5
CRISPR-Cas9 bends and twists DNA to read its sequence.CRISPR-Cas9 使 DNA 弯曲和扭曲以读取其序列。
Nat Struct Mol Biol. 2022 Apr;29(4):395-402. doi: 10.1038/s41594-022-00756-0. Epub 2022 Apr 14.
7
: A fast and automated step detection method for single-molecule analysis.一种用于单分子分析的快速自动化步长检测方法。
Patterns (N Y). 2021 Apr 30;2(5):100256. doi: 10.1016/j.patter.2021.100256. eCollection 2021 May 14.

本文引用的文献

3
Structural basis for microRNA targeting.microRNA 靶向作用的结构基础。
Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.
4
Single-molecule methods leap ahead.单分子方法取得了重大进展。
Nat Methods. 2014 Oct;11(10):1015-8. doi: 10.1038/nmeth.3107.
9
Harnessing CRISPR-Cas9 immunity for genetic engineering.利用CRISPR-Cas9免疫进行基因工程。
Curr Opin Microbiol. 2014 Jun;19:114-119. doi: 10.1016/j.mib.2014.07.001. Epub 2014 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验