Suppr超能文献

使用解析扩散分布分析提取粒子跟踪中的跃迁速率。

Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis.

作者信息

Vink Jochem N A, Brouns Stan J J, Hohlbein Johannes

机构信息

Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.

Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.

出版信息

Biophys J. 2020 Nov 17;119(10):1970-1983. doi: 10.1016/j.bpj.2020.09.033. Epub 2020 Oct 4.

Abstract

Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.

摘要

单粒子追踪是生命科学中用于理解生物分子动力学的一项重要技术。例如,对体内表观扩散系数的分析使研究人员能够确定生物分子是单独移动、作为更大复合物的一部分移动,还是与诸如膜或染色体DNA等大型细胞成分结合。一个尚存的挑战是获取定量动力学模型,尤其是对于在不同扩散状态之间快速切换的分子。在此,我们提出了分析扩散分布分析(anaDDA),这是一个框架,它能够从由每条轨迹少于10个定位点的短轨迹计算出的表观扩散系数分布中提取跃迁速率。在系统是马尔可夫的且扩散纯粹是布朗运动的假设下,我们表明理论预测的分布与模拟分布精确匹配,并且anaDDA在获取动力学方面优于现有方法,特别是在每个成像帧有0.1 - 10次跃迁的快速状态下。AnaDDA确实考虑了限制和追踪窗口边界的影响。此外,我们增加了对在不同帧时间获取的数据进行全局拟合的选项,以便能够可靠地拟合具有多个状态的复杂模型。此前,我们已开始开发anaDDA以研究CRISPR - Cas复合物的靶点搜索。在这项工作中,我们优化了算法并重新分析了在活的大肠杆菌中扩散的DNA聚合酶I的实验数据。我们发现DNA损伤时DNA聚合酶与DNA的长寿命相互作用更为丰富,这表明其在DNA修复中的作用。我们进一步揭示并量化了持续时间短于10毫秒的快速DNA探测相互作用。AnaDDA拓展了单粒子追踪可探测的相互作用时间尺度的边界,并且是一个数学上严谨的框架,可进一步扩展以提取关于活细胞中生物分子行为的详细信息。

相似文献

1
Extracting Transition Rates in Particle Tracking Using Analytical Diffusion Distribution Analysis.
Biophys J. 2020 Nov 17;119(10):1970-1983. doi: 10.1016/j.bpj.2020.09.033. Epub 2020 Oct 4.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Reduction of Confinement Error in Single-Molecule Tracking in Live Bacterial Cells Using SPICER.
Biophys J. 2017 Feb 28;112(4):568-574. doi: 10.1016/j.bpj.2017.01.004.
5
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Biophys J. 2016 May 24;110(10):2241-51. doi: 10.1016/j.bpj.2016.04.023.
6
Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking.
Nat Methods. 2024 Jun;21(6):1074-1081. doi: 10.1038/s41592-023-02149-7. Epub 2024 Jan 15.
7
Resolving Cytosolic Diffusive States in Bacteria by Single-Molecule Tracking.
Biophys J. 2019 May 21;116(10):1970-1983. doi: 10.1016/j.bpj.2019.03.039. Epub 2019 Apr 9.
8
Analysis and refinement of 2D single-particle tracking experiments.
Biointerphases. 2020 Mar 5;15(2):021201. doi: 10.1116/1.5140087.
9
ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202208059. Epub 2023 Feb 28.
10
Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live .
mBio. 2018 Jan 16;9(1):e02143-17. doi: 10.1128/mBio.02143-17.

引用本文的文献

1
Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function.
Nat Methods. 2025 May;22(5):1091-1100. doi: 10.1038/s41592-025-02665-8. Epub 2025 May 8.
2
Freestanding bilayer microscope for single-molecule imaging of membrane proteins.
Sci Adv. 2024 Jun 21;10(25):eado4722. doi: 10.1126/sciadv.ado4722.
3
Robust Quantification of Live-Cell Single-Molecule Tracking Data for Fluorophores with Different Photophysical Properties.
J Phys Chem B. 2024 Aug 1;128(30):7291-7303. doi: 10.1021/acs.jpcb.4c01454. Epub 2024 Jun 10.
4
Live-cell imaging reveals the trade-off between target search flexibility and efficiency for Cas9 and Cas12a.
Nucleic Acids Res. 2024 May 22;52(9):5241-5256. doi: 10.1093/nar/gkae283.
5
Disordered C-terminal domain drives spatiotemporal confinement of RNAPII to enhance search for chromatin targets.
Nat Cell Biol. 2024 Apr;26(4):581-592. doi: 10.1038/s41556-024-01382-2. Epub 2024 Mar 28.
6
Accumulation of defense systems in phage-resistant strains of .
Sci Adv. 2024 Feb 23;10(8):eadj0341. doi: 10.1126/sciadv.adj0341.
7
Temporal analysis of relative distances (TARDIS) is a robust, parameter-free alternative to single-particle tracking.
Nat Methods. 2024 Jun;21(6):1074-1081. doi: 10.1038/s41592-023-02149-7. Epub 2024 Jan 15.
9
GDSC SMLM: Single-molecule localisation microscopy software for ImageJ.
Wellcome Open Res. 2022 Sep 29;7:241. doi: 10.12688/wellcomeopenres.18327.1. eCollection 2022.
10
ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202208059. Epub 2023 Feb 28.

本文引用的文献

1
SMAUG: Analyzing single-molecule tracks with nonparametric Bayesian statistics.
Methods. 2021 Sep;193:16-26. doi: 10.1016/j.ymeth.2020.03.008. Epub 2020 Apr 2.
2
Direct Visualization of Native CRISPR Target Search in Live Bacteria Reveals Cascade DNA Surveillance Mechanism.
Mol Cell. 2020 Jan 2;77(1):39-50.e10. doi: 10.1016/j.molcel.2019.10.021. Epub 2019 Nov 14.
3
Visualisation of dCas9 target search in vivo using an open-microscopy framework.
Nat Commun. 2019 Aug 7;10(1):3552. doi: 10.1038/s41467-019-11514-0.
4
Identification of Multiple Kinetic Populations of DNA-Binding Proteins in Live Cells.
Biophys J. 2019 Sep 3;117(5):950-961. doi: 10.1016/j.bpj.2019.07.015. Epub 2019 Jul 19.
5
Resolving Cytosolic Diffusive States in Bacteria by Single-Molecule Tracking.
Biophys J. 2019 May 21;116(10):1970-1983. doi: 10.1016/j.bpj.2019.03.039. Epub 2019 Apr 9.
6
Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy.
ACS Chem Biol. 2019 Jun 21;14(6):1077-1090. doi: 10.1021/acschembio.9b00197. Epub 2019 May 13.
9
Variational Algorithms for Analyzing Noisy Multistate Diffusion Trajectories.
Biophys J. 2018 Jul 17;115(2):276-282. doi: 10.1016/j.bpj.2018.05.027. Epub 2018 Jun 21.
10
Rediscovering Bacteria through Single-Molecule Imaging in Living Cells.
Biophys J. 2018 Jul 17;115(2):190-202. doi: 10.1016/j.bpj.2018.03.028. Epub 2018 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验