Vink Jochem N A, Brouns Stan J J, Hohlbein Johannes
Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
Department of Bionanoscience, Delft University of Technology, HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
Biophys J. 2020 Nov 17;119(10):1970-1983. doi: 10.1016/j.bpj.2020.09.033. Epub 2020 Oct 4.
Single-particle tracking is an important technique in the life sciences to understand the kinetics of biomolecules. The analysis of apparent diffusion coefficients in vivo, for example, enables researchers to determine whether biomolecules are moving alone, as part of a larger complex, or are bound to large cellular components such as the membrane or chromosomal DNA. A remaining challenge has been to retrieve quantitative kinetic models, especially for molecules that rapidly switch between different diffusional states. Here, we present analytical diffusion distribution analysis (anaDDA), a framework that allows for extracting transition rates from distributions of apparent diffusion coefficients calculated from short trajectories that feature less than 10 localizations per track. Under the assumption that the system is Markovian and diffusion is purely Brownian, we show that theoretically predicted distributions accurately match simulated distributions and that anaDDA outperforms existing methods to retrieve kinetics, especially in the fast regime of 0.1-10 transitions per imaging frame. AnaDDA does account for the effects of confinement and tracking window boundaries. Furthermore, we added the option to perform global fitting of data acquired at different frame times to allow complex models with multiple states to be fitted confidently. Previously, we have started to develop anaDDA to investigate the target search of CRISPR-Cas complexes. In this work, we have optimized the algorithms and reanalyzed experimental data of DNA polymerase I diffusing in live Escherichia coli. We found that long-lived DNA interaction by DNA polymerase are more abundant upon DNA damage, suggesting roles in DNA repair. We further revealed and quantified fast DNA probing interactions that last shorter than 10 ms. AnaDDA pushes the boundaries of the timescale of interactions that can be probed with single-particle tracking and is a mathematically rigorous framework that can be further expanded to extract detailed information about the behavior of biomolecules in living cells.
单粒子追踪是生命科学中用于理解生物分子动力学的一项重要技术。例如,对体内表观扩散系数的分析使研究人员能够确定生物分子是单独移动、作为更大复合物的一部分移动,还是与诸如膜或染色体DNA等大型细胞成分结合。一个尚存的挑战是获取定量动力学模型,尤其是对于在不同扩散状态之间快速切换的分子。在此,我们提出了分析扩散分布分析(anaDDA),这是一个框架,它能够从由每条轨迹少于10个定位点的短轨迹计算出的表观扩散系数分布中提取跃迁速率。在系统是马尔可夫的且扩散纯粹是布朗运动的假设下,我们表明理论预测的分布与模拟分布精确匹配,并且anaDDA在获取动力学方面优于现有方法,特别是在每个成像帧有0.1 - 10次跃迁的快速状态下。AnaDDA确实考虑了限制和追踪窗口边界的影响。此外,我们增加了对在不同帧时间获取的数据进行全局拟合的选项,以便能够可靠地拟合具有多个状态的复杂模型。此前,我们已开始开发anaDDA以研究CRISPR - Cas复合物的靶点搜索。在这项工作中,我们优化了算法并重新分析了在活的大肠杆菌中扩散的DNA聚合酶I的实验数据。我们发现DNA损伤时DNA聚合酶与DNA的长寿命相互作用更为丰富,这表明其在DNA修复中的作用。我们进一步揭示并量化了持续时间短于10毫秒的快速DNA探测相互作用。AnaDDA拓展了单粒子追踪可探测的相互作用时间尺度的边界,并且是一个数学上严谨的框架,可进一步扩展以提取关于活细胞中生物分子行为的详细信息。