Suppr超能文献

替加环素与细菌核糖体结合的另一种模式的结构表征。

Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome.

作者信息

Schedlbauer Andreas, Kaminishi Tatsuya, Ochoa-Lizarralde Borja, Dhimole Neha, Zhou Shu, López-Alonso Jorge P, Connell Sean R, Fucini Paola

机构信息

Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.

Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

出版信息

Antimicrob Agents Chemother. 2015 May;59(5):2849-54. doi: 10.1128/AAC.04895-14. Epub 2015 Mar 9.

Abstract

Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycylamido side chain found in tigecycline. Our structural analysis by X-ray crystallography shows that tigecycline binds the bacterial 30S ribosomal subunit with its tail in an extended conformation and makes extensive interactions with the 16S rRNA nucleotide C1054. These interactions restrict the mobility of C1054 and contribute to the antimicrobial activity of tigecycline, including its resistance to the ribosomal protection proteins.

摘要

虽然四环素和替加环素都通过空间位阻阻碍tRNA与核糖体A位点的结合来抑制蛋白质合成,但替加环素在体外和体内活性测定中均显示出更高的效力,并且规避了与四环素类抗生素相关的最常见耐药机制。这些活性差异归因于替加环素中存在的叔丁基甘氨酰胺侧链。我们通过X射线晶体学进行的结构分析表明,替加环素以其尾部呈伸展构象的方式结合细菌30S核糖体亚基,并与16S rRNA核苷酸C1054发生广泛相互作用。这些相互作用限制了C1054的流动性,并有助于替加环素的抗菌活性,包括其对核糖体保护蛋白的耐药性。

相似文献

1
Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome.
Antimicrob Agents Chemother. 2015 May;59(5):2849-54. doi: 10.1128/AAC.04895-14. Epub 2015 Mar 9.
2
Functional, biophysical, and structural bases for antibacterial activity of tigecycline.
Antimicrob Agents Chemother. 2006 Jun;50(6):2156-66. doi: 10.1128/AAC.01499-05.
3
Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3812-6. doi: 10.1073/pnas.1216691110. Epub 2013 Feb 19.
5
Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA.
J Antimicrob Chemother. 2015 Nov;70(11):2973-80. doi: 10.1093/jac/dkv211. Epub 2015 Jul 16.
6
Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding.
Science. 2005 Apr 1;308(5718):120-3. doi: 10.1126/science.1105639.
9
Tigecycline is modified by the flavin-dependent monooxygenase TetX.
Biochemistry. 2005 Sep 6;44(35):11829-35. doi: 10.1021/bi0506066.
10
Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16274-9. doi: 10.1073/pnas.1414401111. Epub 2014 Nov 3.

引用本文的文献

1
T cell toxicity induced by tigecycline binding to the mitochondrial ribosome.
Nat Commun. 2025 May 1;16(1):4080. doi: 10.1038/s41467-025-59388-9.
3
A Pilot Study: Treatment of High Alcohol Consumption in a Novel Minipig Model of Alcohol Use Disorder.
Alcohol Treat Q. 2024;42(4):393-403. doi: 10.1080/07347324.2024.2355931. Epub 2024 May 30.
4
Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline.
Nat Commun. 2024 Jun 28;15(1):5481. doi: 10.1038/s41467-024-49797-7.
5
Structural conservation of antibiotic interaction with ribosomes.
Nat Struct Mol Biol. 2023 Sep;30(9):1380-1392. doi: 10.1038/s41594-023-01047-y. Epub 2023 Aug 7.
6
Problems Associated with Co-Infection by Multidrug-Resistant in COVID-19 Patients: A Review.
Healthcare (Basel). 2022 Nov 30;10(12):2412. doi: 10.3390/healthcare10122412.
7
Molecular Basis of the Slow Growth of on Different Energy Sources.
Front Cell Infect Microbiol. 2022 Jul 7;12:918557. doi: 10.3389/fcimb.2022.918557. eCollection 2022.
9
Genetic Determinants of Tigecycline Resistance in .
Antibiotics (Basel). 2022 Apr 25;11(5):572. doi: 10.3390/antibiotics11050572.
10
Persister control by leveraging dormancy associated reduction of antibiotic efflux.
PLoS Pathog. 2021 Dec 10;17(12):e1010144. doi: 10.1371/journal.ppat.1010144. eCollection 2021 Dec.

本文引用的文献

1
Tetracycline antibiotics and resistance mechanisms.
Biol Chem. 2014 May;395(5):559-75. doi: 10.1515/hsz-2013-0292.
3
Ribosome-targeting antibiotics and mechanisms of bacterial resistance.
Nat Rev Microbiol. 2014 Jan;12(1):35-48. doi: 10.1038/nrmicro3155.
4
Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3812-6. doi: 10.1073/pnas.1216691110. Epub 2013 Feb 19.
5
Structural basis for TetM-mediated tetracycline resistance.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16900-5. doi: 10.1073/pnas.1208037109. Epub 2012 Oct 1.
7
Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic.
Antimicrob Agents Chemother. 2012 May;56(5):2559-64. doi: 10.1128/AAC.06187-11. Epub 2012 Feb 21.
8
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
9
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
10
XDS.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. doi: 10.1107/S0907444909047337. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验