Schedlbauer Andreas, Kaminishi Tatsuya, Ochoa-Lizarralde Borja, Dhimole Neha, Zhou Shu, López-Alonso Jorge P, Connell Sean R, Fucini Paola
Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain.
Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
Antimicrob Agents Chemother. 2015 May;59(5):2849-54. doi: 10.1128/AAC.04895-14. Epub 2015 Mar 9.
Although both tetracycline and tigecycline inhibit protein synthesis by sterically hindering the binding of tRNA to the ribosomal A site, tigecycline shows increased efficacy in both in vitro and in vivo activity assays and escapes the most common resistance mechanisms associated with the tetracycline class of antibiotics. These differences in activities are attributed to the tert-butyl-glycylamido side chain found in tigecycline. Our structural analysis by X-ray crystallography shows that tigecycline binds the bacterial 30S ribosomal subunit with its tail in an extended conformation and makes extensive interactions with the 16S rRNA nucleotide C1054. These interactions restrict the mobility of C1054 and contribute to the antimicrobial activity of tigecycline, including its resistance to the ribosomal protection proteins.
虽然四环素和替加环素都通过空间位阻阻碍tRNA与核糖体A位点的结合来抑制蛋白质合成,但替加环素在体外和体内活性测定中均显示出更高的效力,并且规避了与四环素类抗生素相关的最常见耐药机制。这些活性差异归因于替加环素中存在的叔丁基甘氨酰胺侧链。我们通过X射线晶体学进行的结构分析表明,替加环素以其尾部呈伸展构象的方式结合细菌30S核糖体亚基,并与16S rRNA核苷酸C1054发生广泛相互作用。这些相互作用限制了C1054的流动性,并有助于替加环素的抗菌活性,包括其对核糖体保护蛋白的耐药性。