Bauer Gesine, Berens Christian, Projan Steven J, Hillen Wolfgang
Institut für Mikrobiologie, Biochemie und Genetik, Universität Erlangen, Erlangen, Germany.
J Antimicrob Chemother. 2004 Apr;53(4):592-9. doi: 10.1093/jac/dkh125. Epub 2004 Feb 25.
The new antibiotic tigecycline (9-t-butylglycylamido-minocycline; GAR-936) overcomes most of the known tetracycline resistance mechanisms. Here we analyse its mode of antibiotic action by probing 70S ribosomes of Escherichia coli with dimethylsulphate (DMS) and Fe(2+)-mediated cleavage to identify binding sites of tetracycline and tigecycline.
Fe(2+)-mediated cleavage makes use of the ability of Fe2+ to replace the Mg2+ ion complexed with tetracyclines. After addition of H2O2, Fe2+ generates short-lived, highly reactive hydroxyl radicals that can cleave RNA close to the tetracycline binding sites.
We identified three prominent Fe(2+)-mediated cleavage sites in helices 29 and 34, and in the internal loop of helix 31 of 16S rRNA in the presence of tetracycline or tigecycline. Qualitatively, these sites are modified identically by both antibiotics, but quantitative differences observed in the cleavage intensities indicate that the drugs bind in slightly different orientations. These results are supported by DMS modification, mutational analysis of 16S rRNA and structural modelling of tigecycline at a tetracycline-binding site in the 30S ribosomal subunit.
Both derivatives bind to identical or overlapping sites and probably share the same mode of antibiotic action. The fact that tigecycline overcomes most of the known tetracycline resistance mechanisms is interpreted as a result of steric hindrance due to the large substituent at position 9.
新型抗生素替加环素(9 - 叔丁基甘氨酰胺米诺环素;GAR - 936)克服了大多数已知的四环素耐药机制。在此,我们通过用硫酸二甲酯(DMS)和铁(II)介导的切割来探测大肠杆菌的70S核糖体,以确定四环素和替加环素的结合位点,从而分析其抗生素作用模式。
铁(II)介导的切割利用了Fe2 +取代与四环素络合的Mg2 +离子的能力。加入过氧化氢后,Fe2 +产生寿命短、反应性高的羟基自由基,其可在四环素结合位点附近切割RNA。
在存在四环素或替加环素的情况下,我们在16S rRNA的螺旋29和34以及螺旋31的内环中鉴定出三个显著的铁(II)介导的切割位点。定性地说,两种抗生素对这些位点的修饰相同,但切割强度上观察到的定量差异表明药物以略有不同的方向结合。这些结果得到了DMS修饰、16S rRNA的突变分析以及替加环素在30S核糖体亚基四环素结合位点的结构建模的支持。
两种衍生物都结合到相同或重叠的位点,并且可能具有相同的抗生素作用模式。替加环素克服了大多数已知的四环素耐药机制这一事实被解释为9位大取代基导致的空间位阻的结果。