Banaschewski Brandon J H, Veldhuizen Edwin J A, Keating Eleonora, Haagsman Henk P, Zuo Yi Y, Yamashita Cory M, Veldhuizen Ruud A W
Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
Antimicrob Agents Chemother. 2015;59(6):3075-83. doi: 10.1128/AAC.04937-14. Epub 2015 Mar 9.
Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.
抗生素耐药性细菌感染已成为临床环境中一个新出现的健康问题,而制药领域缺乏新进展正在为多重耐药性细菌感染制造一场“完美风暴”。抗菌肽(AMPs)被认为是治疗这些耐药细菌的未来疗法,因为它们具有强大的广谱活性,且耐药性发展缓慢。由于肺部结构独特,细菌性肺炎在将抗菌药物输送到感染部位方面还存在额外问题。一种潜在的解决方案是将抗菌肽与外源性表面活性剂联合给药,使肽能够分布到远端气道并打开塌陷的肺区域。本研究的目的是测试各种表面活性剂 - 抗菌肽混合物在维持肺表面活性剂生物物理特性和杀菌功能方面的效果。我们通过评估表面活性剂 - 抗菌肽混合物的生物物理和抗菌功能,比较了悬浮在牛脂质提取物表面活性剂(BLES)中的四种抗菌肽(CATH - 1、CATH - 2、CRAMP和LL - 37)的特性。针对耐甲氧西林金黄色葡萄球菌和铜绿假单胞菌测试了抗菌活性。与BLES对照相比,所有抗菌肽/表面活性剂混合物的铺展性均有所增加。BLES + CATH - 2混合物与BLES对照相比,最低表面张力无显著差异。与其他cathelicidin相比,CATH - 2在存在BLES的情况下保留了最强的杀菌活性。基于体外试验,BLES + CATH - 2混合物似乎是一种最佳的表面活性剂 - 抗菌肽混合物。未来的方向包括在细菌性肺炎动物模型中研究这种混合物的潜力。