Steel Bradley C, Nord Ashley L, Wang Yamin, Pagadala Vijayakanth, Mueller David M, Berry Richard M
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU UK.
1] Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU UK [2] Centre de Biochimie Structurale, 29 Rue de Navacelles, Montpellier, 34000, France.
Sci Rep. 2015 Mar 10;5:8773. doi: 10.1038/srep08773.
Single molecule studies in recent decades have elucidated the full chemo-mechanical cycle of F1-ATPase, mostly based on F1 from thermophilic bacteria. In contrast, high-resolution crystal structures are only available for mitochondrial F1. Here we present high resolution single molecule rotational data on F1 from Saccharomyces cerevisiae, obtained using new high throughput detection and analysis tools. Rotational data are presented for the wild type mitochondrial enzyme, a "liver" isoform, and six mutant forms of yeast F1 that have previously been demonstrated to be less efficient or partially uncoupled. The wild-type and "liver" isoforms show the same qualitative features as F1 from Escherichia coli and thermophilic bacteria. The analysis of the mutant forms revealed a delay at the catalytic dwell and associated decrease in Vmax, with magnitudes consistent with the level of disruption seen in the crystal structures. At least one of the mutant forms shows a previously un-observed dwell at the ATP binding angle, potentially attributable to slowed release of ADP. We discuss the correlation between crystal structures and single molecule results.
近几十年来的单分子研究阐明了F1-ATP酶完整的化学机械循环,这些研究大多基于嗜热菌的F1。相比之下,高分辨率晶体结构仅适用于线粒体F1。在此,我们展示了使用新型高通量检测和分析工具获得的酿酒酵母F1的高分辨率单分子旋转数据。给出了野生型线粒体酶、一种“肝脏”同工型以及六种先前已证明效率较低或部分解偶联的酵母F1突变体形式的旋转数据。野生型和“肝脏”同工型表现出与大肠杆菌和嗜热菌的F1相同的定性特征。对突变体形式的分析揭示了催化停留期的延迟以及Vmax的相关降低,其幅度与晶体结构中观察到的破坏水平一致。至少有一种突变体形式在ATP结合角度出现了先前未观察到的停留,这可能归因于ADP释放减慢。我们讨论了晶体结构与单分子结果之间的相关性。