Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.
F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the "empty" E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ~1-ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions.
F1-ATPase 是 ATP 合酶的催化结构域,它合成了生物体内大部分的 ATP。这种由三个αβ二聚体组成的六聚体环形分子马达在 ATP 水解的驱动下逆向运转,在其中心γ亚基上产生扭矩。这种反向操作使我们能够在实验和模拟中详细探索机械化学耦合机制。在这里,我们使用分子动力学模拟构建了旋转运动 40°亚步之后的中间状态的第一个原子构象,并研究了与旋转偶联的无机磷酸(Pi)释放的时机和分子机制。响应于γ亚基在水解方向上的扭矩驱动旋转,形成“空”E 位的无核苷酸αβE 界面松弛,单价 Pi 容易逃到 P 环。相比之下,界面保持关闭,带双电荷 Pi。γ-旋转使与水解相关的与 ATP 结合的αβTP 界面变紧。从αβE 界面释放带双电荷 Pi 的计算速率与功能时间尺度的约 1ms 非常匹配。相反,早期模型中提出的从 ADP 结合的αβDP 界面释放 Pi 将通过不可行的内向途径发生。我们的模拟通过阐明 Pi 出口的时机、其途径和动力学、相关的 Pi 质子化变化以及在 40°亚步中 F1-ATPase 结构的变化,帮助调和了单分子实验和晶体学研究之间的相互矛盾的解释。尽管功能运动不同,但从我们的模拟中出现的 Pi 释放分子机制的重要元素似乎在肌球蛋白中得到了保守。