Suppr超能文献

磷酸根释放与 F1-ATP 酶的旋转运动相偶联。

Phosphate release coupled to rotary motion of F1-ATPase.

机构信息

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.

Abstract

F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the "empty" E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ~1-ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions.

摘要

F1-ATPase 是 ATP 合酶的催化结构域,它合成了生物体内大部分的 ATP。这种由三个αβ二聚体组成的六聚体环形分子马达在 ATP 水解的驱动下逆向运转,在其中心γ亚基上产生扭矩。这种反向操作使我们能够在实验和模拟中详细探索机械化学耦合机制。在这里,我们使用分子动力学模拟构建了旋转运动 40°亚步之后的中间状态的第一个原子构象,并研究了与旋转偶联的无机磷酸(Pi)释放的时机和分子机制。响应于γ亚基在水解方向上的扭矩驱动旋转,形成“空”E 位的无核苷酸αβE 界面松弛,单价 Pi 容易逃到 P 环。相比之下,界面保持关闭,带双电荷 Pi。γ-旋转使与水解相关的与 ATP 结合的αβTP 界面变紧。从αβE 界面释放带双电荷 Pi 的计算速率与功能时间尺度的约 1ms 非常匹配。相反,早期模型中提出的从 ADP 结合的αβDP 界面释放 Pi 将通过不可行的内向途径发生。我们的模拟通过阐明 Pi 出口的时机、其途径和动力学、相关的 Pi 质子化变化以及在 40°亚步中 F1-ATPase 结构的变化,帮助调和了单分子实验和晶体学研究之间的相互矛盾的解释。尽管功能运动不同,但从我们的模拟中出现的 Pi 释放分子机制的重要元素似乎在肌球蛋白中得到了保守。

相似文献

1
Phosphate release coupled to rotary motion of F1-ATPase.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.
2
How release of phosphate from mammalian F1-ATPase generates a rotary substep.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6009-14. doi: 10.1073/pnas.1506465112. Epub 2015 Apr 27.
3
ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase.
Nat Commun. 2015 Dec 17;6:10223. doi: 10.1038/ncomms10223.
4
Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17851-6. doi: 10.1073/pnas.1419486111. Epub 2014 Dec 1.
5
How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1192-7. doi: 10.1073/pnas.0708746105. Epub 2008 Jan 23.
6
Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F-ATPase Ring.
Biophys J. 2017 Oct 3;113(7):1440-1453. doi: 10.1016/j.bpj.2017.08.015.
7
Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase.
Nature. 2001 Apr 19;410(6831):898-904. doi: 10.1038/35073513.
8
Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F-ATPase.
J Am Chem Soc. 2017 Mar 22;139(11):4025-4034. doi: 10.1021/jacs.6b11708. Epub 2017 Mar 9.
9
Phosphate release in F1-ATPase catalytic cycle follows ADP release.
Nat Chem Biol. 2010 Nov;6(11):814-20. doi: 10.1038/nchembio.443. Epub 2010 Sep 26.
10
Chemomechanical coupling of human mitochondrial F1-ATPase motor.
Nat Chem Biol. 2014 Nov;10(11):930-6. doi: 10.1038/nchembio.1635. Epub 2014 Sep 21.

引用本文的文献

1
Rotation-Direction-Dependent Mechanism of the Inhibitor Protein IF for Mitochondrial ATP Synthase from Atomistic Simulations.
JACS Au. 2025 May 27;5(6):2654-2665. doi: 10.1021/jacsau.5c00261. eCollection 2025 Jun 23.
2
Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors.
Nat Commun. 2025 Mar 7;16(1):2304. doi: 10.1038/s41467-025-57458-6.
3
Rotary mechanism of the prokaryotic V motor driven by proton motive force.
Nat Commun. 2024 Nov 20;15(1):9883. doi: 10.1038/s41467-024-53504-x.
4
Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2314199121. doi: 10.1073/pnas.2314199121. Epub 2024 Mar 7.
5
Molecular simulation approaches to probing the effects of mechanical forces in the actin cytoskeleton.
Cytoskeleton (Hoboken). 2024 Aug;81(8):318-327. doi: 10.1002/cm.21837. Epub 2024 Feb 9.
6
Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments.
Nat Struct Mol Biol. 2023 Nov;30(11):1774-1785. doi: 10.1038/s41594-023-01101-9. Epub 2023 Sep 25.
7
Rotation of the c-Ring Promotes the Curvature Sorting of Monomeric ATP Synthases.
Adv Sci (Weinh). 2023 Nov;10(31):e2301606. doi: 10.1002/advs.202301606. Epub 2023 Sep 13.
8
Angle-dependent rotation velocity consistent with ADP release in bacterial F-ATPase.
Front Mol Biosci. 2023 Aug 2;10:1184249. doi: 10.3389/fmolb.2023.1184249. eCollection 2023.
9
Modeling control and transduction of electrochemical gradients in acid-stressed bacteria.
iScience. 2023 Jun 17;26(7):107140. doi: 10.1016/j.isci.2023.107140. eCollection 2023 Jul 21.
10
Physical pictures of rotation mechanisms of F- and V-ATPases: Leading roles of translational, configurational entropy of water.
Front Mol Biosci. 2023 Jun 9;10:1159603. doi: 10.3389/fmolb.2023.1159603. eCollection 2023.

本文引用的文献

1
The ATP synthase: the understood, the uncertain and the unknown.
Biochem Soc Trans. 2013 Feb 1;41(1):1-16. doi: 10.1042/BST20110773.
2
Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2117-22. doi: 10.1073/pnas.1214741110. Epub 2013 Jan 23.
3
Twisting and subunit rotation in single F(O)(F1)-ATP synthase.
Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120024. doi: 10.1098/rstb.2012.0024. Print 2013 Feb 5.
4
Role of the DELSEED loop in torque transmission of F1-ATPase.
Biophys J. 2012 Sep 5;103(5):970-8. doi: 10.1016/j.bpj.2012.06.054.
5
Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11139-43. doi: 10.1073/pnas.1207587109. Epub 2012 Jun 25.
6
Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations.
J Am Chem Soc. 2012 May 23;134(20):8447-54. doi: 10.1021/ja211027m. Epub 2012 May 11.
7
Single-molecule fluorescence experiments determine protein folding transition path times.
Science. 2012 Feb 24;335(6071):981-4. doi: 10.1126/science.1215768.
8
Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20550-5. doi: 10.1073/pnas.1117024108. Epub 2011 Dec 5.
9
Mechanical modulation of catalytic power on F1-ATPase.
Nat Chem Biol. 2011 Nov 20;8(1):86-92. doi: 10.1038/nchembio.715.
10
Thermodynamic efficiency and mechanochemical coupling of F1-ATPase.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17951-6. doi: 10.1073/pnas.1106787108. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验