Suppr超能文献

循环神经网络中的意向运动反馈控制。

Ideomotor feedback control in a recurrent neural network.

作者信息

Galtier Mathieu

机构信息

Minds, Jacobs University Bremen, Bremen, Germany,

出版信息

Biol Cybern. 2015 Jun;109(3):363-75. doi: 10.1007/s00422-015-0648-4. Epub 2015 Mar 10.

Abstract

The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.

摘要

本文介绍了一种用于控制未知环境的神经网络架构。它基于一个随机连接的递归神经网络,在该网络中,感知和动作同时被读取并反馈。有两种并行的学习规则实现了一种意向运动控制:(i)感知学习遵循网络应可靠预测其传入刺激的原则;(ii)动作学习遵循网络的预测应与目标时间序列匹配的原则。神经网络在其环境中的连贯行为是这两种原则相互作用的结果。数值模拟显示了该方法具有良好的性能,可将其转化为一种局部且更具 “生物学合理性” 的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验