Bachère Evelyne, Rosa Rafael Diego, Schmitt Paulina, Poirier Aurore C, Merou Nicolas, Charrière Guillaume M, Destoumieux-Garzón Delphine
Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France.
Ifremer, UMR 5244, IHPE Interaction Host Pathogen Environment, UPVD, CNRS, Université de Montpellier, CC 80, F-34095 Montpellier, France; Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
Fish Shellfish Immunol. 2015 Sep;46(1):50-64. doi: 10.1016/j.fsi.2015.02.040. Epub 2015 Mar 7.
Oysters are sessile filter feeders that live in close association with abundant and diverse communities of microorganisms that form the oyster microbiota. In such an association, cellular and molecular mechanisms have evolved to maintain oyster homeostasis upon stressful conditions including infection and changing environments. We give here cellular and molecular insights into the Crassostrea gigas antimicrobial defense system with focus on antimicrobial peptides and proteins (AMPs). This review highlights the central role of the hemocytes in the modulation and control of oyster antimicrobial response. As vehicles for AMPs and other antimicrobial effectors, including reactive oxygen species (ROS), and together with epithelia, hemocytes provide the oyster with local defense reactions instead of systemic humoral ones. These reactions are largely based on phagocytosis but also, as recently described, on the extracellular release of antimicrobial histones (ETosis) which is triggered by ROS. Thus, ROS can signal danger and activate cellular responses in the oyster. From the current literature, AMP production/release could serve similar functions. We provide also new lights on the oyster genetic background that underlies a great diversity of AMP sequences but also an extraordinary individual polymorphism of AMP gene expression. We discuss here how this polymorphism could generate new immune functions, new pathogen resistances or support individual adaptation to environmental stresses.
牡蛎是固着性滤食动物,与构成牡蛎微生物群的丰富多样的微生物群落密切共生。在这种共生关系中,细胞和分子机制已经进化,以在包括感染和环境变化在内的应激条件下维持牡蛎的内稳态。在此,我们从细胞和分子层面深入探讨太平洋牡蛎的抗菌防御系统,重点关注抗菌肽和蛋白质(AMPs)。本综述强调了血细胞在调节和控制牡蛎抗菌反应中的核心作用。作为抗菌肽和其他抗菌效应物(包括活性氧(ROS))的载体,血细胞与上皮细胞一起为牡蛎提供局部防御反应,而非全身性体液防御反应。这些反应主要基于吞噬作用,但最近也发现,还基于由ROS触发的抗菌组蛋白的细胞外释放(ETosis)。因此,ROS可以发出危险信号并激活牡蛎的细胞反应。从现有文献来看,抗菌肽的产生/释放可能具有类似功能。我们还为牡蛎的遗传背景提供了新的见解,这不仅是抗菌肽序列高度多样性的基础,也是抗菌肽基因表达异常个体多态性的基础。我们在此讨论这种多态性如何产生新的免疫功能、新的病原体抗性或支持个体对环境压力的适应。