Suppr超能文献

转录组分析揭示了碱度暴露导致的[具体生物名称未给出]鳃中抗氧化防御系统、形态和基因表达的变化。

Transcriptome Profiling Analysis Reveals Changes in the Antioxidant Defense System, Morphology, and Gene Expression in the Gills of Caused by Alkalinity Exposure.

作者信息

Jin Shubo, Zhang Yuefan, Fu Hongtuo, Zhang Wenyi, Qiao Hui, Xiong Yiwei, Jiang Sufei

机构信息

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.

出版信息

Int J Mol Sci. 2025 May 1;26(9):4321. doi: 10.3390/ijms26094321.

Abstract

The median lethal concentration value of alkalinity tolerance for over 96 h is only 14.42 mmol/L with a safety value of 4.71 mmol/L, which is insufficient to perform the aquaculture program in a water environment with high alkalinity. Thus, the present study aims to explore the effects of alkalinity exposure on the gills of through identifying the changes in antioxidant enzymes, morphology, and gene expressions after 1 day, 4 days, and 7 days of exposure under an alkalinity of 10 mmol/L. The activities of MDA, GSH-PX, CAT, T-AOC, and CaMg-ATPase are significantly stimulated by 62.6%, 6.57%, 32.1%, 33.3%, and 14.9%, compared to those from Day 0 (control group), indicating that these antioxidant enzymes play essential roles in the protection of prawns from the damage of reactive oxygen species caused by alkalinity exposure. In addition, alkalinity exposure results in an increase in the hemolymph vessels, affecting the normal respiratory function of the gills. Transcriptome profiling analysis reveals that short-term alkali exposure (4 days) does not result in significant changes in gene expression in the present study. Furthermore, metabolic pathways, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, lysosomes, glycolysis/gluconeogenesis, and phagosomes represent the main enriched metabolic pathways of differentially expressed genes (DEGs) between Day 4 and Day 7. Biosynthesis of amino acids, lysosomes, and phagosomes are immune-related metabolic pathways, while amino sugar and nucleotide sugar metabolism and glycolysis/gluconeogenesis are energy metabolism-related metabolic pathways, indicating that the processes of immune response and energy metabolism play essential roles in the response to alkalinity exposure in . Thus, the DEGs from these metabolic pathways are considered as candidate genes involved in the regulation of alkaline acclimation in . The present study provides valuable evidence for analysis of the adaptive mechanism when exposed to alkalinity, contributing to the survival rate and aquaculture of this species under water environments with high alkalinity.

摘要

96小时以上的碱度耐受性半数致死浓度值仅为14.42毫摩尔/升,安全值为4.71毫摩尔/升,这不足以在高碱度水环境中开展水产养殖项目。因此,本研究旨在通过确定在10毫摩尔/升碱度下暴露1天、4天和7天后抗氧化酶、形态和基因表达的变化,来探究碱度暴露对虾鳃的影响。与第0天(对照组)相比,丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-PX)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)和钙镁ATP酶的活性分别显著提高了62.6%、6.57%、32.1%、33.3%和14.9%,表明这些抗氧化酶在保护对虾免受碱度暴露引起的活性氧损伤方面发挥着重要作用。此外,碱度暴露导致血淋巴血管增多,影响鳃的正常呼吸功能。转录组分析表明,在本研究中短期碱暴露(4天)不会导致基因表达的显著变化。此外,代谢途径、氨基酸生物合成、氨基糖和核苷酸糖代谢、溶酶体、糖酵解/糖异生和吞噬体是第4天和第7天差异表达基因(DEG)的主要富集代谢途径。氨基酸生物合成、溶酶体和吞噬体是与免疫相关的代谢途径,而氨基糖和核苷酸糖代谢以及糖酵解/糖异生是与能量代谢相关的代谢途径,这表明免疫反应和能量代谢过程在对虾对碱度暴露的反应中发挥着重要作用。因此,来自这些代谢途径的DEG被认为是参与对虾碱性适应调节的候选基因。本研究为分析对虾暴露于碱度时的适应性机制提供了有价值的证据,有助于提高该物种在高碱度水环境中的存活率和水产养殖产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbc/12072836/b60c2da7df81/ijms-26-04321-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验