López-Cuevas Armando, Castillo-Toledo Bernardino, Medina-Ceja Laura, Ventura-Mejía Consuelo
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV, Unidad Guadalajara, Av. del Bosque 1145, Col. El Bajío, Zapopan, 45015 Jalisco, Mexico.
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV, Unidad Guadalajara, Av. del Bosque 1145, Col. El Bajío, Zapopan, 45015 Jalisco, Mexico.
Neuroimage. 2015 Jun;113:374-86. doi: 10.1016/j.neuroimage.2015.02.059. Epub 2015 Mar 7.
Status epilepticus is an emergency condition in patients with prolonged seizure or recurrent seizures without full recovery between them. The pathophysiological mechanisms of status epilepticus are not well established. With this argument, we use a computational modeling approach combined with in vivo electrophysiological data obtained from an experimental model of status epilepticus to infer about changes that may lead to a seizure. Special emphasis is done to analyze parameter changes during or after pilocarpine administration. A cubature Kalman filter is utilized to estimate parameters and states of the model in real time from the observed electrophysiological signals. It was observed that during basal activity (before pilocarpine administration) the parameters presented a standard deviation below 30% of the mean value, while during SE activity, the parameters presented variations larger than 200% of the mean value with respect to basal state. The ratio of excitation-inhibition, increased during SE activity by 80% with respect to the transition state, and reaches the lowest value during cessation. In addition, a progression between low and fast inhibitions before or during this condition was found. This method can be implemented in real time, which is particularly important for the design of stimulation devices that attempt to stop seizures. These changes in the parameters analyzed during seizure activity can lead to better understanding of the mechanisms of epilepsy and to improve its treatments.
癫痫持续状态是指患者出现长时间癫痫发作或反复癫痫发作且发作间期无完全恢复的紧急情况。癫痫持续状态的病理生理机制尚未完全明确。基于此观点,我们采用计算建模方法,并结合从癫痫持续状态实验模型中获取的体内电生理数据,来推断可能导致癫痫发作的变化。特别着重分析毛果芸香碱给药期间或之后的参数变化。利用容积卡尔曼滤波器根据观察到的电生理信号实时估计模型的参数和状态。结果发现,在基础活动期间(毛果芸香碱给药前),参数的标准差低于平均值的30%,而在癫痫持续状态活动期间,相对于基础状态,参数的变化大于平均值的200%。兴奋 - 抑制比在癫痫持续状态活动期间相对于过渡状态增加了80%,并在发作停止时达到最低值。此外,在此情况之前或期间发现了低抑制和快速抑制之间的进展。该方法可实时实施,这对于试图终止癫痫发作的刺激装置设计尤为重要。癫痫发作活动期间分析的这些参数变化有助于更好地理解癫痫机制并改善其治疗方法。