Suppr超能文献

基于模型的无感官测量的癫痫发作鲁棒抑制

Model-based robust suppression of epileptic seizures without sensory measurements.

作者信息

Çetin Meriç

机构信息

Department of Computer Engineering, Pamukkale University, Kinikli Campus, 20070 Denizli, Turkey.

出版信息

Cogn Neurodyn. 2020 Feb;14(1):51-67. doi: 10.1007/s11571-019-09555-8. Epub 2019 Sep 22.

Abstract

Uncontrolled seizures may lead to irreversible damages in the brain and various limitations in the patient's life. There exist experimental studies to stabilize the patient seizures. However, the experimental setups have many sensory devices to measure the dynamics of the brain cortex. These equipments prevent to produce small portable stabilizers for patients in everyday life. Recently, a comprehensive cortex model is introduced to apply model-based observers and controllers. However, this cortex model can be uncertain and have time-varying parameters. Therefore, in this paper, a robust Takagi-Sugeno (TS) controller and observer are designed to suppress the epileptic seizures without sensory measurements. The unavailable sensory measurements are provided by the designed nonlinear observer. The exponential convergence of the observer and controller is satisfied by the feedback parameter design using linear matrix inequalities. In addition, TS fuzzy observer-controller design has been compared with the conventional PID method in terms of control performance and design problem. The numerical computations show that the epileptic seizures are more effectively suppressed by the TS fuzzy observer-based controller under uncertain membrane potential dynamics.

摘要

癫痫发作不受控制可能会导致大脑不可逆转的损伤以及患者生活中的各种限制。存在一些稳定患者癫痫发作的实验研究。然而,实验装置有许多用于测量大脑皮层动态的传感设备。这些设备阻碍了为患者在日常生活中生产小型便携式稳定器。最近,引入了一个综合皮层模型来应用基于模型的观测器和控制器。然而,这个皮层模型可能是不确定的且具有时变参数。因此,在本文中,设计了一种鲁棒的高木-菅野(TS)控制器和观测器,以在无需传感测量的情况下抑制癫痫发作。所设计的非线性观测器提供了无法获取的传感测量值。通过使用线性矩阵不等式的反馈参数设计,满足了观测器和控制器的指数收敛。此外,在控制性能和设计问题方面,将TS模糊观测器-控制器设计与传统的PID方法进行了比较。数值计算表明,在不确定膜电位动态的情况下,基于TS模糊观测器的控制器能更有效地抑制癫痫发作。

相似文献

1
Model-based robust suppression of epileptic seizures without sensory measurements.
Cogn Neurodyn. 2020 Feb;14(1):51-67. doi: 10.1007/s11571-019-09555-8. Epub 2019 Sep 22.
2
Observer based robust fuzzy tracking control: application to an activated sludge process.
PeerJ Comput Sci. 2021 Apr 13;7:e458. doi: 10.7717/peerj-cs.458. eCollection 2021.
3
An Efficient Approach to Define the Input Stimuli to Suppress Epileptic Seizures Described by the Epileptor Model.
Int J Neural Syst. 2020 Nov;30(11):2050062. doi: 10.1142/S0129065720500628. Epub 2020 Sep 16.
4
Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control.
IEEE Trans Syst Man Cybern B Cybern. 2006 Jun;36(3):509-19. doi: 10.1109/tsmcb.2005.862486.
5
Nonmonotonic observer-based fuzzy controller designs for discrete time T-S fuzzy systems via LMI.
IEEE Trans Cybern. 2014 Dec;44(12):2557-67. doi: 10.1109/TCYB.2014.2310591. Epub 2014 Apr 10.
6
T-S fuzzy model predictive speed control of electrical vehicles.
ISA Trans. 2016 Sep;64:231-240. doi: 10.1016/j.isatra.2016.04.019. Epub 2016 May 7.
7
Robust covariance control for discrete system by Takagi-Sugeno fuzzy controllers.
ISA Trans. 2004 Jul;43(3):377-87. doi: 10.1016/s0019-0578(07)60155-4.
8
Observers for Takagi-Sugeno fuzzy systems.
IEEE Trans Syst Man Cybern B Cybern. 2002;32(1):114-21. doi: 10.1109/3477.979966.
10
Adaptive and robust controller design for uncertain nonlinear systems via fuzzy modeling approach.
IEEE Trans Syst Man Cybern B Cybern. 2004 Feb;34(1):166-78. doi: 10.1109/tsmcb.2003.811757.

引用本文的文献

1
The co-activation patterns of multiple brain regions in Juvenile Myoclonic Epilepsy.
Cogn Neurodyn. 2024 Apr;18(2):337-347. doi: 10.1007/s11571-022-09838-7. Epub 2022 Jul 7.
2
Classification of the Epileptic Seizure Onset Zone Based on Partial Annotation.
Cogn Neurodyn. 2023 Jun;17(3):703-713. doi: 10.1007/s11571-022-09857-4. Epub 2022 Aug 18.
3
Closed-loop seizure modulation via extreme learning machine based extended state observer.
Cogn Neurodyn. 2023 Jun;17(3):741-754. doi: 10.1007/s11571-022-09841-y. Epub 2022 Aug 5.
4
Generalizable epileptic seizures prediction based on deep transfer learning.
Cogn Neurodyn. 2023 Feb;17(1):119-131. doi: 10.1007/s11571-022-09809-y. Epub 2022 Apr 29.
5
Deep-layer motif method for estimating information flow between EEG signals.
Cogn Neurodyn. 2022 Aug;16(4):819-831. doi: 10.1007/s11571-021-09759-x. Epub 2022 Jan 5.
6
Epileptic seizures in a heterogeneous excitatory network with short-term plasticity.
Cogn Neurodyn. 2021 Feb;15(1):43-51. doi: 10.1007/s11571-020-09582-w. Epub 2020 Mar 16.

本文引用的文献

1
A review on EEG-based methods for screening and diagnosing alcohol use disorder.
Cogn Neurodyn. 2018 Apr;12(2):141-156. doi: 10.1007/s11571-017-9465-x. Epub 2017 Dec 5.
2
Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus.
Cogn Neurodyn. 2018 Feb;12(1):103-119. doi: 10.1007/s11571-017-9457-x. Epub 2017 Oct 20.
3
Measures of entropy and complexity in altered states of consciousness.
Cogn Neurodyn. 2018 Feb;12(1):73-84. doi: 10.1007/s11571-017-9459-8. Epub 2017 Oct 20.
4
A new description of epileptic seizures based on dynamic analysis of a thalamocortical model.
Sci Rep. 2017 Oct 19;7(1):13615. doi: 10.1038/s41598-017-13126-4.
5
Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.
IEEE Trans Neural Syst Rehabil Eng. 2017 Nov;25(11):2188-2195. doi: 10.1109/TNSRE.2017.2712418. Epub 2017 Jun 6.
7
Computational modeling of neurostimulation in brain diseases.
Prog Brain Res. 2015;222:191-228. doi: 10.1016/bs.pbr.2015.06.012. Epub 2015 Jul 29.
8
Optimal control based seizure abatement using patient derived connectivity.
Front Neurosci. 2015 Jun 3;9:202. doi: 10.3389/fnins.2015.00202. eCollection 2015.
9
UKF-based closed loop iterative learning control of epileptiform wave in a neural mass model.
Cogn Neurodyn. 2015 Feb;9(1):31-40. doi: 10.1007/s11571-014-9306-0. Epub 2014 Aug 20.
10
State and parameter estimation of a neural mass model from electrophysiological signals during the status epilepticus.
Neuroimage. 2015 Jun;113:374-86. doi: 10.1016/j.neuroimage.2015.02.059. Epub 2015 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验