Twyman-Saint Victor Christina, Rech Andrew J, Maity Amit, Rengan Ramesh, Pauken Kristen E, Stelekati Erietta, Benci Joseph L, Xu Bihui, Dada Hannah, Odorizzi Pamela M, Herati Ramin S, Mansfield Kathleen D, Patsch Dana, Amaravadi Ravi K, Schuchter Lynn M, Ishwaran Hemant, Mick Rosemarie, Pryma Daniel A, Xu Xiaowei, Feldman Michael D, Gangadhar Tara C, Hahn Stephen M, Wherry E John, Vonderheide Robert H, Minn Andy J
1] Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Nature. 2015 Apr 16;520(7547):373-7. doi: 10.1038/nature14292. Epub 2015 Mar 9.
Immune checkpoint inhibitors result in impressive clinical responses, but optimal results will require combination with each other and other therapies. This raises fundamental questions about mechanisms of non-redundancy and resistance. Here we report major tumour regressions in a subset of patients with metastatic melanoma treated with an anti-CTLA4 antibody (anti-CTLA4) and radiation, and reproduced this effect in mouse models. Although combined treatment improved responses in irradiated and unirradiated tumours, resistance was common. Unbiased analyses of mice revealed that resistance was due to upregulation of PD-L1 on melanoma cells and associated with T-cell exhaustion. Accordingly, optimal response in melanoma and other cancer types requires radiation, anti-CTLA4 and anti-PD-L1/PD-1. Anti-CTLA4 predominantly inhibits T-regulatory cells (Treg cells), thereby increasing the CD8 T-cell to Treg (CD8/Treg) ratio. Radiation enhances the diversity of the T-cell receptor (TCR) repertoire of intratumoral T cells. Together, anti-CTLA4 promotes expansion of T cells, while radiation shapes the TCR repertoire of the expanded peripheral clones. Addition of PD-L1 blockade reverses T-cell exhaustion to mitigate depression in the CD8/Treg ratio and further encourages oligoclonal T-cell expansion. Similarly to results from mice, patients on our clinical trial with melanoma showing high PD-L1 did not respond to radiation plus anti-CTLA4, demonstrated persistent T-cell exhaustion, and rapidly progressed. Thus, PD-L1 on melanoma cells allows tumours to escape anti-CTLA4-based therapy, and the combination of radiation, anti-CTLA4 and anti-PD-L1 promotes response and immunity through distinct mechanisms.
免疫检查点抑制剂产生了令人瞩目的临床反应,但要获得最佳效果需要相互联合以及与其他疗法联合使用。这引发了关于非冗余和耐药机制的基本问题。在此,我们报告了一部分接受抗CTLA4抗体(抗CTLA4)和放疗的转移性黑色素瘤患者出现了显著的肿瘤消退,并在小鼠模型中重现了这一效果。尽管联合治疗改善了照射和未照射肿瘤的反应,但耐药情况很常见。对小鼠的无偏分析显示,耐药是由于黑色素瘤细胞上PD-L1上调,并与T细胞耗竭相关。因此,黑色素瘤和其他癌症类型的最佳反应需要放疗、抗CTLA4和抗PD-L1/PD-1联合使用。抗CTLA4主要抑制调节性T细胞(Treg细胞),从而提高CD8 T细胞与Treg细胞的比例(CD8/Treg)。放疗可增强肿瘤内T细胞的T细胞受体(TCR)库的多样性。抗CTLA4共同促进T细胞的扩增,而放疗则塑造扩增的外周克隆的TCR库。添加PD-L1阻断可逆转T细胞耗竭,减轻CD8/Treg比例的降低,并进一步促进寡克隆T细胞扩增。与小鼠实验结果相似,我们黑色素瘤临床试验中PD-L1高表达的患者对放疗加抗CTLA4无反应,表现出持续的T细胞耗竭,并迅速进展。因此,黑色素瘤细胞上的PD-L1使肿瘤能够逃避基于抗CTLA4的治疗,而放疗、抗CTLA4和抗PD-L1的联合通过不同机制促进反应和免疫。