Billington Neil, Beach Jordan R, Heissler Sarah M, Remmert Kirsten, Guzik-Lendrum Stephanie, Nagy Attila, Takagi Yasuharu, Shao Lin, Li Dong, Yang Yi, Zhang Yingfan, Barzik Melanie, Betzig Eric, Hammer John A, Sellers James R
Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-8015, USA.
Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-8015, USA.
Curr Biol. 2015 Mar 30;25(7):942-8. doi: 10.1016/j.cub.2015.02.012. Epub 2015 Mar 5.
Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ∼ 65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications.
18类肌球蛋白与传统的2类非肌肉肌球蛋白(NM2)关系最为密切。令人惊讶的是,果蝇、小鼠和人类肌球蛋白18A(M18A)的纯化头部结构域缺乏肌动蛋白激活的ATP酶活性以及使肌动蛋白丝移位的能力,这表明M18A在体内的功能并不依赖于内在的运动活性。M18A具有2类肌球蛋白之外所有肌球蛋白中最长的卷曲螺旋,这表明它可能形成类似于传统肌球蛋白的双极丝。为了探究这种可能性,我们使用杆状病毒/Sf9系统表达并纯化了全长小鼠M18A。在任何测试条件下,M18A都不会形成大的双极丝。相反,M18A形成了一种约65纳米长的双极结构,两端各有两个头部。重要的是,当NM2在M18A存在的情况下聚合时,这两种肌球蛋白形成了混合双极丝,共沉降、电子显微镜和单分子成像都证明了这一点。此外,使用荧光标记蛋白对NM2和M18A进行超分辨率成像以及对内源蛋白进行免疫染色表明,NM2和M18A共同存在于活细胞内的单个丝中。总之,我们的体外和活细胞成像数据有力地表明,M18A与NM2共同组装成混合双极丝。M18A可以调节这些丝的生物物理特性,并凭借其额外的N端和C端结构域,确定丝的定位和/或分子相互作用。鉴于NM2在细胞和发育中具有众多基本作用,我们的结果具有深远的生物学意义。