Suppr超能文献

螳螂在三个旋转的身体部位之间交换角动量,以便精确地跳到目标处。

Mantises exchange angular momentum between three rotating body parts to jump precisely to targets.

作者信息

Burrows Malcolm, Cullen Darron A, Dorosenko Marina, Sutton Gregory P

机构信息

Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.

Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Department of Biology, University of Leicester, Leicester LE2 7RH, UK.

出版信息

Curr Biol. 2015 Mar 16;25(6):786-789. doi: 10.1016/j.cub.2015.01.054. Epub 2015 Mar 5.

Abstract

Flightless animals have evolved diverse mechanisms to control their movements in air, whether falling with gravity or propelling against it. Many insects jump as a primary mode of locomotion and must therefore precisely control the large torques generated during takeoff. For example, to minimize spin (angular momentum of the body) at takeoff, plant-sucking bugs apply large equal and opposite torques from two propulsive legs [1]. Interacting gear wheels have evolved in some to give precise synchronization of these legs [2, 3]. Once airborne, as a result of either jumping or falling, further adjustments may be needed to control trajectory and orient the body for landing. Tails are used by geckos to control pitch [4, 5] and by Anolis lizards to alter direction [6, 7]. When falling, cats rotate their body [8], while aphids [9] and ants [10, 11] manipulate wind resistance against their legs and thorax. Falling is always downward, but targeted jumping must achieve many possible desired trajectories. We show that when making targeted jumps, juvenile wingless mantises first rotated their abdomen about the thorax to adjust the center of mass and thus regulate spin at takeoff. Once airborne, they then smoothly and sequentially transferred angular momentum in four stages between the jointed abdomen, the two raptorial front legs, and the two propulsive hind legs to produce a controlled jump with a precise landing. Experimentally impairing abdominal movements reduced the overall rotation so that the mantis either failed to grasp the target or crashed into it head first.

摘要

不会飞的动物已经进化出多种机制来控制它们在空中的运动,无论是顺重力下落还是逆重力推进。许多昆虫以跳跃作为主要的运动方式,因此必须精确控制起飞时产生的巨大扭矩。例如,为了在起飞时尽量减少自旋(身体的角动量),吸食植物的虫子会用两条推进腿施加大小相等、方向相反的巨大扭矩[1]。在一些昆虫中,相互作用的齿轮已经进化出来,以使这些腿精确同步[2,3]。一旦在空中,由于跳跃或下落,可能需要进一步调整以控制轨迹并使身体定向以便着陆。壁虎用尾巴控制俯仰[4,5],安乐蜥用尾巴改变方向[6,7]。下落时,猫会转动身体[8],而蚜虫[9]和蚂蚁[10,11]则通过腿部和胸部来控制风阻。下落总是向下的,但有目标的跳跃必须实现许多可能的期望轨迹。我们发现,在进行有目标的跳跃时,无翅的幼年螳螂首先会绕着胸部旋转腹部以调整质心,从而在起飞时调节自旋。一旦在空中,它们会在四个阶段中,在分节的腹部、两条捕捉用的前腿和两条推进用的后腿之间平稳且依次地传递角动量,以实现一次受控的跳跃并精确着陆。通过实验破坏腹部运动,会减少整体旋转,导致螳螂要么抓不住目标,要么头朝目标撞上去。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验