Suppr超能文献

一种用于动态代谢组学数据的加权相对差异累积算法:长期胆汁酸升高是肝细胞癌的危险因素。

A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma.

作者信息

Zhang Weijian, Zhou Lina, Yin Peiyuan, Wang Jinbing, Lu Xin, Wang Xiaomei, Chen Jianguo, Lin Xiaohui, Xu Guowang

机构信息

School of Computer Science &Technology, Dalian University of Technology, Dalian, China.

Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

出版信息

Sci Rep. 2015 Mar 11;5:8984. doi: 10.1038/srep08984.

Abstract

Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease development and drug treatment and reveal the nature of biological processes at metabolic level. To extract important information in a systematic time dimension rather than at isolated time points, a weighted method based on the means and variations along the time points was proposed and first applied to previously published rat model data. The method was subsequently extended and applied to prospective metabolomics data analysis of hepatocellular carcinoma (HCC). Permutation was employed for noise filtering and false discovery rate (FDR) was used for parameter optimization during the feature selection. Long-term elevated serum bile acids were identified as risk factors for HCC development.

摘要

动态代谢组学研究能够提供疾病发展和药物治疗过程中代谢轨迹的系统视图,并在代谢水平揭示生物过程的本质。为了在系统的时间维度而非孤立的时间点提取重要信息,提出了一种基于各时间点均值和变异的加权方法,并首次应用于先前发表的大鼠模型数据。该方法随后得到扩展,并应用于肝细胞癌(HCC)的前瞻性代谢组学数据分析。在特征选择过程中,采用排列检验进行噪声过滤,并使用错误发现率(FDR)进行参数优化。长期升高的血清胆汁酸被确定为HCC发展的风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f42/4355672/f5d84229d5ff/srep08984-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验