Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
ACS Nano. 2015 Apr 28;9(4):3558-71. doi: 10.1021/acsnano.5b00550. Epub 2015 Mar 18.
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.
采用 Ru(NH3)6(3+/2+)作为氧化还原探针,研究了机械剥离石墨烯和高取向热解石墨(HOPG)在水溶液中的电化学(EC)行为,该探针的标准电位接近石墨烯和石墨的本征费米能级。当将扫描电化学池显微镜(SECCM)数据与应用于同一样品区域的互补技术(AFM、微拉曼)的数据结合使用时,揭示了在基面和台阶边缘之间不同的随时间变化的 EC 活性。相比之下,其他氧化还原偶(二茂铁衍生物)的电位进一步偏离石墨烯和石墨的本征费米能级,显示出均匀且高的活性(接近扩散控制)。在不同环境中的宏观伏安测量表明,HOPG 解理后 Ru(NH3)6(3+/2+)特有的随时间变化的行为与任何表面污染物都没有特别关联,而是合理地归因于 HOPG 的自发分层,从而形成部分耦合的石墨烯层,这一过程得到了导电 AFM 测量的进一步支持。该过程对石墨烯和石墨边缘的态密度有重大影响,特别是在 Ru(NH3)6(3+/2+)最敏感的本征费米能级。通过使用改进的 SECCM 伏安模式,我们制作了 HOPG 活性的电位分辨和空间分辨电影,揭示了台阶边缘活性增强对 Ru(NH3)6(3+/2+)是一个微妙的影响。这些后续研究使我们能够提出一个微观模型来解释考虑到非平凡电子能带结构的石墨烯(基面和边缘)和老化 HOPG 的 EC 响应。