Wright Salem C, Brea Courtney, Baxter Jefferey S, Saini Sonakshi, Alsaç Elif Pınar, Yoon Sun Geun, Boebinger Matthew G, Hu Guoxiang, McDowell Matthew T
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Chemistry and Biochemistry, Queens College of the City University of New York, New York, New York 11367, United States.
ACS Nano. 2024 May 28;18(21):13866-13875. doi: 10.1021/acsnano.4c02981. Epub 2024 May 15.
Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.
在电沉积过程中控制材料结构和形态对于材料合成及能源应用至关重要。引导微晶形成的一种方法是利用集电器上的外延作用来促进晶体学控制。金属箔上的单层石墨烯可在铜和锌电沉积过程中促进“远程外延”,从而使金属生长与石墨烯下方的基底呈晶体学取向一致。然而,促成外延电沉积的基底 - 石墨烯 - 沉积物相互作用尚未得到充分理解。在此,我们研究不同石墨烯层厚度(单层、双层、三层和石墨)如何影响锌和铜的电沉积。利用扫描透射电子显微镜和电子背散射衍射来了解金属形态和结构,结果表明远程外延发生在单层和双层石墨烯上,而不是三层或更厚的石墨烯上。密度泛函理论(DFT)模拟揭示了通过薄石墨烯促进远程外延的空间电子相互作用。这项工作增进了我们对电化学远程外延的理解,并为改善电沉积控制提供了策略。