Suppr超能文献

聚集蛋白聚糖的纳米级固液相互作用是软骨动态力学性能的主要决定因素。

Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

作者信息

Nia Hadi Tavakoli, Han Lin, Bozchalooi Iman Soltani, Roughley Peter, Youcef-Toumi Kamal, Grodzinsky Alan J, Ortiz Christine

机构信息

†Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

‡School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.

出版信息

ACS Nano. 2015 Mar 24;9(3):2614-25. doi: 10.1021/nn5062707. Epub 2015 Mar 13.

Abstract

Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue.

摘要

组织间隙液与结缔组织细胞外基质之间的孔隙弹性相互作用对于涉及溶质运输、能量耗散、自我硬化和润滑的生物学及病理生理学功能至关重要。然而,纳米尺度下孔隙弹性的分子起源在很大程度上尚不清楚。在此,首次揭示了软骨聚集蛋白聚糖单层的广谱动态纳米力学行为,包括平衡模量和瞬时模量以及复模量相角中的峰值。通过进行长度尺度研究并将实验结果与理论预测进行比较,我们证实观察到的动态纳米力学背后的机制是由于分子尺度上的固液相互作用(孔隙弹性)。利用有限元建模,对聚集蛋白聚糖组装体的分子尺度水力渗透率进行了量化(kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s),发现其与完整正常软骨组织的纳米尺度水力渗透率相似,但远低于早期病变组织的水力渗透率。通过改变分子组成的糖胺聚糖链之间的静电相互作用,进一步研究了聚集蛋白聚糖孔隙弹性的潜在机制:在控制分子行为方面静电相互作用主导空间相互作用。虽然聚集蛋白聚糖层得水力渗透率在不同物种和年龄之间没有变化,但来自成人软骨的聚集蛋白聚糖比来自新生儿组织的聚集蛋白聚糖更硬。

相似文献

5
Compressive nanomechanics of opposing aggrecan macromolecules.对向聚集蛋白聚糖大分子的压缩纳米力学
J Biomech. 2006;39(14):2555-65. doi: 10.1016/j.jbiomech.2005.09.007. Epub 2005 Nov 9.
10
Lateral nanomechanics of cartilage aggrecan macromolecules.软骨聚集蛋白聚糖大分子的侧向纳米力学
Biophys J. 2007 Feb 15;92(4):1384-98. doi: 10.1529/biophysj.106.091397. Epub 2006 Dec 1.

引用本文的文献

2
Synovium friction properties are influenced by proteoglycan content.滑膜的摩擦特性受蛋白聚糖含量的影响。
J Biomech. 2024 Sep;174:112272. doi: 10.1016/j.jbiomech.2024.112272. Epub 2024 Aug 10.
8
Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction.黏弹性与力一样,在机械转导中发挥作用。
Front Cell Dev Biol. 2022 Feb 9;10:789841. doi: 10.3389/fcell.2022.789841. eCollection 2022.

本文引用的文献

2
Proteoglycans and diseases of soft tissues.蛋白聚糖与软组织疾病。
Adv Exp Med Biol. 2014;802:49-58. doi: 10.1007/978-94-007-7893-1_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验