Piacenti Alba R, Adam Casey, Hawkins Nicholas, Wagner Ryan, Seifert Jacob, Taniguchi Yukinori, Proksch Roger, Contera Sonia
Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, U.K.
Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, U.K.
Macromolecules. 2024 Jan 16;57(3):1118-1127. doi: 10.1021/acs.macromol.3c02052. eCollection 2024 Feb 13.
Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene-butadiene rubber (SBR), demonstrating the method's ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2-20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation-frequency modulation (AM-FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application.
聚合物材料广泛应用于从汽车到生物医学等众多行业。它们的机械性能在其应用和功能中起着至关重要的作用,并且源于其组成聚合物分子的纳米级结构和相互作用。聚合物材料表现出粘弹性,即它们的机械响应取决于测量的时间尺度;在纳米尺度上量化这些与时间相关的流变特性对于开发例如那些先进工业应用所需的精确材料模型和模拟至关重要。在本文中,开发了一种基于原子力显微镜(AFM)悬臂光热驱动的方法来量化聚合物材料的纳米级损耗角正切、储能模量和损耗模量。然后该方法在丁苯橡胶(SBR)上得到验证,证明了该方法在高达5个数量级(0.2 - 20,200 Hz)的连续频率范围内量化纳米级粘弹性的能力。此外,该方法与通过调幅 - 调频(AM - FM)原子力显微镜获得的原子力显微镜粘弹性映射相结合,能够在更宽的频率范围内扩展粘弹性量化,并证明这种新技术与现有的用于粘弹性性质定量测量的原子力显微镜技术协同作用。本文提出的方法引入了一种在纳米尺度上表征聚合物材料以及一般的软物质和生物物质的粘弹性以用于任何应用的方法。