Suppr超能文献

聚焦微观:左旋多巴诱发异动症中纹状体树突棘的可塑性。

Zooming in on the small: the plasticity of striatal dendritic spines in L-DOPA-induced dyskinesia.

作者信息

Fieblinger Tim, Cenci M Angela

机构信息

Basal Ganglia Pathophysiology Unit, Dept. Exp. Medical Science, Lund University, BMC F11, 221 84 Lund, Sweden.

出版信息

Mov Disord. 2015 Apr;30(4):484-93. doi: 10.1002/mds.26139. Epub 2015 Mar 11.

Abstract

The spiny dendrites of striatal projection neurons integrate synaptic inputs of different origins to regulate movement. It has long been known that these dendrites lose spines and display atrophic features in Parkinson's disease (PD), but the significance of these morphological changes has remained unknown. Some recent studies reveal a remarkable structural plasticity of striatal spines in parkinsonian rodents treated with L-3,4-dihydroxyphenylalanine (L-DOPA), and they demonstrate an association between this plasticity and the development of dyskinesia. These studies used different approaches and animal models, which possibly explains why they emphasize different plastic changes as being most closely linked to dyskinesia (such as a growth of new spines in neurons of the indirect pathway, or a loss of spines in neurons of the direct pathway, or the appearance of spines with aberrant synaptic features). Clearly, further investigations are required to reconcile these intriguing findings and integrate them in a coherent pathophysiological model. Nevertheless, these studies may mark the beginning of a new era for dyskinesia research. In addition to addressing neurochemical and molecular events that trigger involuntary movements, there is a need to better understand the long-lasting structural reorganization of cells and circuits that maintain the brain in a "dyskinesia-prone" state. This may lead to the identification of new efficacious approaches to prevent the complications of dopaminergic therapies in PD.

摘要

纹状体投射神经元的棘状树突整合不同来源的突触输入以调节运动。长期以来,人们一直知道这些树突在帕金森病(PD)中会失去棘突并呈现萎缩特征,但这些形态变化的意义尚不清楚。最近的一些研究揭示了用L-3,4-二羟基苯丙氨酸(L-DOPA)治疗的帕金森病啮齿动物纹状体棘突具有显著的结构可塑性,并且它们证明了这种可塑性与运动障碍的发展之间存在关联。这些研究采用了不同的方法和动物模型,这可能解释了为什么它们强调不同的可塑性变化与运动障碍最密切相关(例如间接通路神经元中新棘突的生长,或直接通路神经元中棘突的丧失,或具有异常突触特征的棘突的出现)。显然,需要进一步的研究来协调这些有趣的发现,并将它们整合到一个连贯的病理生理模型中。然而,这些研究可能标志着运动障碍研究新时代的开始。除了研究引发不自主运动的神经化学和分子事件外,还需要更好地理解使大脑维持在“易发生运动障碍”状态的细胞和回路的长期结构重组。这可能会导致识别出预防帕金森病多巴胺能治疗并发症的新有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验