Suppr超能文献

利用介电泳提高稀有细胞捕获微器件的灵敏度和特异性。

Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.

机构信息

Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA.

Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA.

出版信息

Biomicrofluidics. 2015 Feb 10;9(1):014116. doi: 10.1063/1.4908049. eCollection 2015 Jan.

Abstract

The capture and subsequent analysis of rare cells, such as circulating tumor cells from a peripheral blood sample, has the potential to advance our understanding and treatment of a wide range of diseases. There is a particular need for high purity (i.e., high specificity) techniques to isolate these cells, reducing the time and cost required for single-cell genetic analyses by decreasing the number of contaminating cells analyzed. Previous work has shown that antibody-based immunocapture can be combined with dielectrophoresis (DEP) to differentially isolate cancer cells from leukocytes in a characterization device. Here, we build on that work by developing numerical simulations that identify microfluidic obstacle array geometries where DEP-immunocapture can be used to maximize the capture of target rare cells, while minimizing the capture of contaminating cells. We consider geometries with electrodes offset from the array and parallel to the fluid flow, maximizing the magnitude of the resulting electric field at the obstacles' leading and trailing edges, and minimizing it at the obstacles' shoulders. This configuration attracts cells with a positive DEP (pDEP) response to the leading edge, where the shear stress is low and residence time is long, resulting in a high capture probability; although these cells are also repelled from the shoulder region, the high local fluid velocity at the shoulder minimizes the impact on the overall transport and capture. Likewise, cells undergoing negative DEP (nDEP) are repelled from regions of high capture probability and attracted to regions where capture is unlikely. These simulations predict that DEP can be used to reduce the probability of capturing contaminating peripheral blood mononuclear cells (using nDEP) from 0.16 to 0.01 while simultaneously increasing the capture of several pancreatic cancer cell lines from 0.03-0.10 to 0.14-0.55, laying the groundwork for the experimental study of hybrid DEP-immunocapture obstacle array microdevices.

摘要

从外周血样本中捕获并随后分析稀有细胞,如循环肿瘤细胞,具有推进我们对广泛疾病的理解和治疗的潜力。需要特别使用高纯度(即高特异性)技术来分离这些细胞,通过减少分析的污染细胞数量,减少单细胞遗传分析所需的时间和成本。先前的工作表明,基于抗体的免疫捕获可以与介电泳(DEP)结合使用,以在特征化设备中从白细胞中差异分离癌细胞。在这里,我们通过开发数值模拟来进一步研究该工作,该模拟确定了微流控障碍物阵列的几何形状,其中DEP-免疫捕获可用于最大程度地捕获目标稀有细胞,同时最小化对污染细胞的捕获。我们考虑了电极从阵列偏移且与流体流动平行的几何形状,从而最大化了障碍物前缘和后缘处产生的电场的幅度,并最小化了障碍物肩部处的电场幅度。这种配置吸引了对正介电泳(pDEP)有反应的细胞,它们在前缘处的剪切应力较低,停留时间较长,从而具有较高的捕获概率;尽管这些细胞也会从肩部区域被排斥,但肩部区域的局部高速流体速度最小化了对整体传输和捕获的影响。同样,经历负介电泳(nDEP)的细胞会从高捕获概率区域被排斥,并被吸引到不太可能捕获的区域。这些模拟预测,DEP 可用于将捕获污染的外周血单核细胞的概率(使用 nDEP)从 0.16 降低到 0.01,同时将几种胰腺癌细胞系的捕获率从 0.03-0.10 提高到 0.14-0.55,为杂交 DEP-免疫捕获障碍物阵列微器件的实验研究奠定了基础。

相似文献

1
Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.
Biomicrofluidics. 2015 Feb 10;9(1):014116. doi: 10.1063/1.4908049. eCollection 2015 Jan.
3
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
Electrophoresis. 2013 Nov;34(20-21):2970-9. doi: 10.1002/elps.201300242. Epub 2013 Oct 9.
7
Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77. doi: 10.1007/978-3-642-55469-8.
9
Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
Electrophoresis. 2015 Aug;36(15):1744-53. doi: 10.1002/elps.201400565. Epub 2015 Jun 24.
10
Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
Electrophoresis. 2011 Jun;32(11):1337-47. doi: 10.1002/elps.201000548. Epub 2011 Apr 28.

引用本文的文献

1
Dielectrophoresis-based microfluidic platforms for cancer diagnostics.
Biomicrofluidics. 2018 Feb 23;12(1):011503. doi: 10.1063/1.5010158. eCollection 2018 Jan.
3
Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection.
IET Nanobiotechnol. 2016 Oct;10(5):263-275. doi: 10.1049/iet-nbt.2015.0060.
4
Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics.
Biomicrofluidics. 2016 Mar 15;10(2):024105. doi: 10.1063/1.4943859. eCollection 2016 Mar.
5
Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures.
Biomicrofluidics. 2016 Jan 19;10(1):014109. doi: 10.1063/1.4939947. eCollection 2016 Jan.
6
Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis.
Biomicrofluidics. 2015 Dec 29;9(6):064120. doi: 10.1063/1.4938391. eCollection 2015 Nov.
7
Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces.
Biomicrofluidics. 2015 Dec 8;9(6):061501. doi: 10.1063/1.4936300. eCollection 2015 Nov.
8
Microfluidic Sample Preparation for Single Cell Analysis.
Anal Chem. 2016 Jan 5;88(1):354-80. doi: 10.1021/acs.analchem.5b04077. Epub 2015 Dec 3.
9
Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.
Biomicrofluidics. 2015 Aug 31;9(4):044129. doi: 10.1063/1.4929824. eCollection 2015 Jul.

本文引用的文献

5
Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells.
Biomicrofluidics. 2013 Jan 23;7(1):11809. doi: 10.1063/1.4788921. eCollection 2013.
6
Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.
Biomicrofluidics. 2013 Jan 16;7(1):11808. doi: 10.1063/1.4774307. eCollection 2013.
7
Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions.
Gastroenterology. 2014 Mar;146(3):647-51. doi: 10.1053/j.gastro.2013.12.007. Epub 2013 Dec 13.
8
Transport and collision dynamics in periodic asymmetric obstacle arrays: rational design of microfluidic rare-cell immunocapture devices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032136. doi: 10.1103/PhysRevE.88.032136. Epub 2013 Sep 26.
10
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
Electrophoresis. 2013 Nov;34(20-21):2970-9. doi: 10.1002/elps.201300242. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验