Suppr超能文献

类核上移动的ParA梯度通过趋化力引导亚细胞货物运输。

A moving ParA gradient on the nucleoid directs subcellular cargo transport via a chemophoresis force.

作者信息

Vecchiarelli Anthony G, Seol Yeonee, Neuman Keir C, Mizuuchi Kiyoshi

机构信息

a Laboratory of Molecular Biology ; National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health ; Bethesda , MD USA.

出版信息

Bioarchitecture. 2014;4(4-5):154-9. doi: 10.4161/19490992.2014.987581.

Abstract

DNA segregation is a critical process for all life, and although there is a relatively good understanding of eukaryotic mitosis, the mechanism in bacteria remains unclear. The small size of a bacterial cell and the number of factors involved in its subcellular organization make it difficult to study individual systems under controlled conditions in vivo. We developed a cell-free technique to reconstitute and visualize bacterial ParA-mediated segregation systems. Our studies provide direct evidence for a mode of transport that does not use a classical cytoskeletal filament or motor protein. Instead, we demonstrate that ParA-type DNA segregation systems can establish a propagating ParA ATPase gradient on the nucleoid surface, which generates the force required for the directed movement of spatially confined cargoes, such as plasmids or large organelles, and distributes multiple cargos equidistant to each other inside cells. Here we present the critical principles of our diffusion-ratchet model of ParA-mediated transport and expand on the mathematically derived chemophoresis force using experimentally-determined biochemical and cellular parameters.

摘要

DNA分离是所有生命的关键过程,尽管对真核细胞有丝分裂有了相对较好的理解,但细菌中的机制仍不清楚。细菌细胞的小尺寸及其亚细胞组织中涉及的多种因素使得在体内可控条件下研究单个系统变得困难。我们开发了一种无细胞技术来重组和可视化细菌ParA介导的分离系统。我们的研究为一种不使用经典细胞骨架丝或运动蛋白的运输模式提供了直接证据。相反,我们证明ParA型DNA分离系统可以在类核表面建立一个传播的ParA ATP酶梯度,该梯度产生空间受限货物(如质粒或大型细胞器)定向移动所需的力,并在细胞内将多个货物彼此等距分布。在这里,我们介绍了我们的ParA介导运输的扩散棘轮模型的关键原理,并使用实验确定的生化和细胞参数扩展了数学推导的化学驱动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b6/4914017/31395b25672e/kbia-04-4-5-987581-g001.jpg

相似文献

1
A moving ParA gradient on the nucleoid directs subcellular cargo transport via a chemophoresis force.
Bioarchitecture. 2014;4(4-5):154-9. doi: 10.4161/19490992.2014.987581.
2
A propagating ATPase gradient drives transport of surface-confined cellular cargo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4880-5. doi: 10.1073/pnas.1401025111. Epub 2014 Feb 24.
3
Chemophoresis engine: A general mechanism of ATPase-driven cargo transport.
PLoS Comput Biol. 2022 Jul 25;18(7):e1010324. doi: 10.1371/journal.pcbi.1010324. eCollection 2022 Jul.
4
Reconstituting ParA/ParB-mediated transport of DNA cargo.
Methods Cell Biol. 2015;128:243-69. doi: 10.1016/bs.mcb.2015.01.021. Epub 2015 Apr 8.
5
Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1390-7. doi: 10.1073/pnas.1302745110. Epub 2013 Mar 11.
6
Directed and persistent movement arises from mechanochemistry of the ParA/ParB system.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7055-64. doi: 10.1073/pnas.1505147112. Epub 2015 Dec 8.
7
Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.
Biophys J. 2017 Apr 11;112(7):1489-1502. doi: 10.1016/j.bpj.2017.02.039.
8
DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7268-E7276. doi: 10.1073/pnas.1616118113. Epub 2016 Oct 31.
9
ParA-mediated plasmid partition driven by protein pattern self-organization.
EMBO J. 2013 May 2;32(9):1238-49. doi: 10.1038/emboj.2013.34. Epub 2013 Feb 26.
10
ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition.
Mol Microbiol. 2010 Oct;78(1):78-91. doi: 10.1111/j.1365-2958.2010.07314.x. Epub 2010 Jul 27.

引用本文的文献

1
Plasmid partitioning driven by collective migration of ParA between nucleoid lobes.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2319205121. doi: 10.1073/pnas.2319205121. Epub 2024 Apr 23.
2
Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies.
FEMS Microbiol Rev. 2024 Jan 12;48(1). doi: 10.1093/femsre/fuad067.
3
Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system.
PLoS Genet. 2023 Sep 21;19(9):e1010951. doi: 10.1371/journal.pgen.1010951. eCollection 2023 Sep.
4
Chemophoresis engine: A general mechanism of ATPase-driven cargo transport.
PLoS Comput Biol. 2022 Jul 25;18(7):e1010324. doi: 10.1371/journal.pcbi.1010324. eCollection 2022 Jul.
5
Cross-linkers at growing microtubule ends generate forces that drive actin transport.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2112799119. doi: 10.1073/pnas.2112799119. Epub 2022 Mar 10.
6
Positioning the Model Bacterial Organelle, the Carboxysome.
mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19.
7
Identification of a Potential Membrane-Targeting Sequence in the C-Terminus of the F Plasmid Segregation Protein SopA.
J Membr Biol. 2021 Jun;254(3):243-257. doi: 10.1007/s00232-020-00157-8. Epub 2021 Jan 11.
8
Reconstitution and Coupling of DNA Replication and Segregation in a Biomimetic System.
Chembiochem. 2019 Oct 15;20(20):2633-2642. doi: 10.1002/cbic.201900299. Epub 2019 Aug 28.
9
How bacteria arrange their organelles.
Elife. 2019 Jan 10;8:e43777. doi: 10.7554/eLife.43777.
10
Brownian ratchet mechanisms of ParA-mediated partitioning.
Plasmid. 2017 Jul;92:12-16. doi: 10.1016/j.plasmid.2017.05.002. Epub 2017 May 18.

本文引用的文献

1
Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid partitioning.
Biophysics (Nagoya-shi). 2011 Sep 11;7:77-88. doi: 10.2142/biophysics.7.77. eCollection 2011.
2
A propagating ATPase gradient drives transport of surface-confined cellular cargo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4880-5. doi: 10.1073/pnas.1401025111. Epub 2014 Feb 24.
3
Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1390-7. doi: 10.1073/pnas.1302745110. Epub 2013 Mar 11.
4
ParA-mediated plasmid partition driven by protein pattern self-organization.
EMBO J. 2013 May 2;32(9):1238-49. doi: 10.1038/emboj.2013.34. Epub 2013 Feb 26.
5
Surfing biological surfaces: exploiting the nucleoid for partition and transport in bacteria.
Mol Microbiol. 2012 Nov;86(3):513-23. doi: 10.1111/mmi.12017. Epub 2012 Sep 19.
6
The ParA/MinD family puts things in their place.
Trends Microbiol. 2012 Sep;20(9):411-8. doi: 10.1016/j.tim.2012.05.002. Epub 2012 Jun 4.
7
Partitioning of P1 plasmids by gradual distribution of the ATPase ParA.
Mol Microbiol. 2010 Dec;78(5):1182-98. doi: 10.1111/j.1365-2958.2010.07398.x. Epub 2010 Oct 6.
8
ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition.
Mol Microbiol. 2010 Oct;78(1):78-91. doi: 10.1111/j.1365-2958.2010.07314.x. Epub 2010 Jul 27.
9
Pushing and pulling in prokaryotic DNA segregation.
Cell. 2010 Jun 11;141(6):927-42. doi: 10.1016/j.cell.2010.05.033.
10
Movement and equipositioning of plasmids by ParA filament disassembly.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19369-74. doi: 10.1073/pnas.0908347106. Epub 2009 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验