Suppr超能文献

定位模式细菌细胞器,即羧化体。

Positioning the Model Bacterial Organelle, the Carboxysome.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA

出版信息

mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19.

Abstract

Bacterial microcompartments (BMCs) confine a diverse array of metabolic reactions within a selectively permeable protein shell, allowing for specialized biochemistry that would be less efficient or altogether impossible without compartmentalization. BMCs play critical roles in carbon fixation, carbon source utilization, and pathogenesis. Despite their prevalence and importance in bacterial metabolism, little is known about BMC "homeostasis," a term we use here to encompass BMC assembly, composition, size, copy-number, maintenance, turnover, positioning, and ultimately, function in the cell. The carbon-fixing carboxysome is one of the most well-studied BMCs with regard to mechanisms of self-assembly and subcellular organization. In this minireview, we focus on the only known BMC positioning system to date-the aintenance of arboxysome istribution (Mcd) system, which spatially organizes carboxysomes. We describe the two-component McdAB system and its proposed diffusion-ratchet mechanism for carboxysome positioning. We then discuss the prevalence of McdAB systems among carboxysome-containing bacteria and highlight recent evidence suggesting how liquid-liquid phase separation (LLPS) may play critical roles in carboxysome homeostasis. We end with an outline of future work on the carboxysome distribution system and a perspective on how other BMCs may be spatially regulated. We anticipate that a deeper understanding of BMC organization, including nontraditional homeostasis mechanisms involving LLPS and ATP-driven organization, is on the horizon.

摘要

细菌微室(BMC)将各种代谢反应局限在选择性可渗透的蛋白质壳内,允许进行专门的生物化学,而没有分隔则效率较低或完全不可能。BMC 在碳固定、碳源利用和发病机制中起着关键作用。尽管它们在细菌代谢中普遍存在且重要,但对 BMC“动态平衡”(我们在这里使用这个术语来包含 BMC 的组装、组成、大小、拷贝数、维持、周转率、定位以及最终在细胞中的功能)知之甚少。就自组装和亚细胞组织的机制而言,固碳羧酶体是研究得最多的 BMC 之一。在这篇综述中,我们重点介绍迄今为止唯一已知的 BMC 定位系统——维持羧酶体分布(Mcd)系统,该系统对羧酶体进行空间组织。我们描述了双组分 McdAB 系统及其用于羧酶体定位的扩散棘轮机制。然后,我们讨论了 McdAB 系统在含有羧酶体的细菌中的普遍性,并强调了最近的证据表明液-液相分离(LLPS)如何在羧酶体动态平衡中发挥关键作用。最后,我们概述了羧酶体分布系统的未来工作,并展望了其他 BMC 如何可能受到空间调节。我们预计,对 BMC 组织的更深入理解,包括涉及 LLPS 和 ATP 驱动组织的非传统动态平衡机制,即将出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52a3/8262871/ec18ad70f378/mbio.02519-19-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验