Kros Lieke, Eelkman Rooda Oscar H J, Spanke Jochen K, Alva Parimala, van Dongen Marijn N, Karapatis Athanasios, Tolner Else A, Strydis Christos, Davey Neil, Winkelman Beerend H J, Negrello Mario, Serdijn Wouter A, Steuber Volker, van den Maagdenberg Arn M J M, De Zeeuw Chris I, Hoebeek Freek E
Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom.
Ann Neurol. 2015 Jun;77(6):1027-49. doi: 10.1002/ana.24399.
Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures.
Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand CN stimulation could disrupt epileptic seizures.
We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated its occurrence. A single short-lasting (30-300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped within 500 milliseconds.
CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated.
事实证明,破坏丘脑皮质活动模式是一种很有前景的方法,可用于阻止失神发作所特有的广泛性棘慢复合波放电(GSWDs)。在此,我们研究了小脑核(CN)中神经元放电的调制在控制失神发作方面的有效性,小脑核在解剖学上处于有利位置,可通过其对多种丘脑核的支配来破坏皮质振荡。
使用两种无关的全身性失神发作小鼠模型:自然突变体蹒跚小鼠,其特征是Cacna1a基因存在错义突变,以及近交系C3H/HeOuJ小鼠。在清醒动物同时记录单个CN神经元活动和脑电图时,我们研究了药理学上增加或减少CN神经元活动在多大程度上可以调节GSWD的发生,以及短期按需CN刺激在多大程度上可以破坏癫痫发作。
我们发现,一部分CN神经元在GSWD期间表现出锁相振荡放电,并且操纵这种活动可调节GSWD的发生。通过局部应用γ-氨基丁酸A型(GABA-A)激动剂蝇蕈醇抑制CN神经元动作电位放电,可使GSWD的发生增加多达37倍,而使用GABA-A拮抗剂荷包牡丹碱增加CN神经元放电的频率和规律性,则可减少其发生。对CN神经元活动进行单次短期(30 - 300毫秒)光遗传学刺激可突然停止GSWD,即使单侧应用也是如此。使用闭环系统,可在500毫秒内检测并停止GSWD。
CN神经元是失神发作期间丘脑皮质网络活动中病理性振荡的有效调节因子,应评估其在控制其他类型全身性癫痫方面的潜在治疗益处。