Zaletel Michael P, Vishwanath Ashvin
Department of Physics, University of California, Berkeley, California 94720, USA.
Department of Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2015 Feb 20;114(7):077201. doi: 10.1103/PhysRevLett.114.077201. Epub 2015 Feb 18.
We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility.
我们指出了在莫特绝缘体(每单位晶胞具有奇数个自旋1/2矩的量子磁体)中拓扑序上某些由对称性诱导的约束。例如,我们表明双半子拓扑序与莫特绝缘体中的时间反演和平移对称性不相容。这强化了二维量子磁体的黑斯廷斯 - 押川 - 利布 - 舒尔茨 - 马蒂斯定理,该定理保证了一个完全对称的带隙莫特绝缘体必定是拓扑有序的,但对于允许哪种拓扑序却未作说明。我们的结果适用于 Kagome 晶格量子反铁磁体,近期对其纠缠熵的数值计算表明其基态与环面码或双半子拓扑序兼容。我们的结果排除了后一种可能性。